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Abstract: In this paper, we address the problem of steering the input of a convex function
to a value that minimizes the function under a convex constraint. We consider the case where
the constraint cannot be violated of more than a user-defined value during the whole transient
phase. The mathematical expression of both the cost function and the constraint are assumed to
be unknown. The only information available are the on-line values of the cost and the constraint.
To tackle this problem, an optimization law, based on a modified-barrier function, and involving
the gradient of both the cost function and the constraint, is firstly designed. The Lie bracket
formalism is then exploited to approximate this law, by combining time-periodic signals with the
on-line measurements of both the cost and the constraint. The stability property of the resulting
constrained extremum seeking system is proved, and its effectiveness is shown in simulation.
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1. INTRODUCTION

In practical applications, the aim is often to optimize
a process variable, the cost, while enforcing some safety
margins, formulated as constraints. One may think to the
case of battery charging, where one wants to minimize the
charging time, while ensuring safety features, formulated
notably as constraints on the maximal current and tem-
perature (see e.g. Liu et al. (2017) or Zhang et al. (2017)).
Another example is the production of chemicals in a reac-
tor. In that case, one aims to maximize the production,
while enforcing some constraints, such as the maximal
temperature or the concentration of undesirable products
(see e.g. Simon et al. (2008) or Pahija et al. (2013)).

In several cases, the relations between the control inputs
and both the cost and the constraints are only partially
known. Model-free extremum seeking is a class of real-time
optimization methods suited for those cases. Typically,
extremum seeking systems steer the control inputs towards
the cost optimizer, by combining time-periodic signals
with the on-line measurement of the cost (see e.g. Ariyur
and Krstic (2003), Suttner and Dashkovskiy (2017) or
Labar et al. (2018b)). Several extremum seeking systems
considering constrained optimization problems have been
proposed in the literature. One may for instance mention
the schemes based on Lagrangian functions, presented in
Dürr et al. (2013a) and Grushkovskaya and Ebenbauer
(2016), and the ones based on penaly/barrier functions
given in DeHaan and Guay (2005) and Guay et al. (2015).
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The schemes based on the combination of penalty/barrier
functions may enforce the satisfaction of the constraints
at all time. However, this requires an adequate tuning of
the parameters (e.g. the value of the transition between the
barrier and penalty functions). Extremum seeking schemes
based on Lagrangian are, for instance, well suited for dis-
tributed optimization problems. However, the constraints
may be (severely) violated during the transient, which can
be problematic in practical applications.

In this paper, we aim at designing a constrained extremum
seeking scheme ensuring that, at any time, and indepen-
dently of the tuning parameters, the constraints are not
violated of more than a user-defined value. To do so, we
will combine a so-called modified barrier function with a
saddle point dynamics. Note that allowing a user-defined
(slight) violation of the constraints during the transient is
something typical in many practical applications. One may
think to the maximal current intensity inside a wire, the
maximal torque delivered by a DC motor, or the maximal
temperature in a chemical reactor.

To the best of our knowledge, the combination of a
modified barrier function with saddle point dynamics
has never been studied in details in the framework of
extremum seeking. Although a similar combination has
been proposed in Dürr and Ebenbauer (2012), the gradient
of the cost was assumed to be known, and no theoretical
analysis was carried out.

The remainder of the paper is organized as follows. The
notations and definitions, together with the Lie bracket
approximation approach, are introduced in Section 2.



The considered problem is formally stated in Section 3.
Section 4 presents the proposed approach together with its
stability property. Finally, simulation results are presented
in Section 5.

2. PRELIMINARIES

2.1 Notations and Definitions

The Euclidean norm of a vector x ∈ Rn is denoted by
||x||. R>0 and Q>0 are the sets of strictly positive real
numbers and strictly positive rational numbers, respec-
tively. LCM(k1, k2, ..., kn) stands for the Least Common
Multiple of {k1, k2, ..., kn}. ∇h represents the gradient of
the differentiable function h : Rn → R. The Jacobian of a
differentiable map f : Rn → Rm is denoted by ∂f

∂x . The Lie
bracket of two differentiable vector fields f : Rn → Rn and
g : Rn → Rn, denoted by [f, g](x), is defined by ∂g

∂xf(x)−
∂f
∂xg(x). A δ−neighbourhood of a set S ⊂ Rn, with δ ∈
R>0, with respect to a set R ⊆ Rn, is denoted by USR(δ),
and defined by USR(δ) := {x ∈ R : infy∈S ||x− y|| < δ}.
The closure of an open set R ⊂ Rn is denoted by R.

Furthermore, in the sequel, we will refer to the following
definitions:

Definition 1. Let Ω ⊆ Rnx . A point (x∗, λ∗) ∈ Ω× Rnλ≥0 is

a saddle point for the function L(x, λ) : Ω× Rnλ≥0 → R if

L(x∗, λ) ≤ L(x∗, λ∗) ≤ L(x, λ∗),∀(x, λ) ∈ Ω× Rnλ≥0. (1)

Definition 2. Consider the constrained optimization prob-
lem minx∈Rnx h(x) such that g(x) ≤ 0, where h(x) :
Rnx → R and g(x) : Rnx → R are convex functions of
class C1. Let L(x, λ) := h(x) + λg(x) be the associated
Lagrangian function. A point (x∗, λ∗) ∈ Rnx×R≥0 satisfies
the Karush-Kuhn-Tucker (KKT) conditions if:

(1) g(x∗) ≤ 0
(2) λ∗ ≥ 0

(3) λ∗g(x∗) = 0
(4) ∇xL(x∗, λ∗) = 0.

Let S ⊂ Rn be a compact set and R ⊆ Rn be an
open set such that R ∩ S is non-empty. Similarly to
Dürr et al. (2013b), we define (semi)-regional (practical)
uniform asymptotic stability of S in R as follows:

Definition 3. The set of points S is Regionally Uniformly
Asymptotically Stable (RUAS) in R for the n-dimensional
system ẋ= f(t, x) if, for every δB ∈ R>0 and δV ∈ R>0,
there exist δQ ∈ R>0 and δW ∈ R>0 such that, for every
t0 ∈ R, the following hold:

(1) Boundedness:x(t0)∈USR(δV)⇒x(t)∈USR(δW), ∀t≥ t0;
(2) Stability: x(t0) ∈ USR(δQ)⇒ x(t) ∈ USR(δB), ∀t ≥ t0;
(3) Asymptotic Convergence:

x(t0)∈USR(δV)⇒ lim supt→∞ infy∈S ||x(t)− y|| = 0.

Definition 4. The set of points S is semi-Regionally Prac-
tically Uniformly Asymptotically Stable (sRPUAS) in R
for the n-dimensional system ẋ=f(t, x, ε), with the vector
of parameters ε = [ε1, ε2, ..., εnε ]

T , if the following holds.
For every δB ∈ R>0 and δV ∈ R>0, there exist a δQ ∈ R>0,
a δW ∈ R>0, and an ε∗1 ∈ R>0 such that, for every
ε1 ∈ (0, ε∗1), there exists an ε∗2 ∈ R>0 such that, for every
ε2 ∈ (0, ε∗2),..., there exists an ε∗nε ∈ R>0 such that, for
every εnε ∈ (0, ε∗nε), there exists a t1 ∈ R such that, for
every t0 ∈ R, the following three properties are fulfilled:

(1) Boundedness:x(t0)∈USR(δV)⇒x(t)∈USR(δW), ∀t≥ t0;
(2) Stability: x(t0) ∈ USR(δQ)⇒ x(t) ∈ USR(δB), ∀t ≥ t0;
(3) Practical Convergence:

x(t0)∈USR(δV)⇒x(t)∈USR(δB), ∀t≥ t1+t0.

2.2 First Order Lie Bracket Approximation Approach

In this section, we remind the notion of an associated
Lie bracket system, together with some of its properties.
Those properties will be exploited to design and analyze
the proposed extremum seeking scheme.

Consider an input-affine system

ẋ(t) = f0(x(t)) +

l∑
i=1

fi(x(t))
√
ωui(kiωt), (2)

with x(t) ∈ Rn the state vector of the system, ui(t) ∈ R
the control inputs, ω ∈ R>0 and ki ∈ Q>0.

Let system (2) satisfy the following Assumption:

Assumption 5. (Conditions on ui) For all i ∈ {1, ..., l}:
(1) ui(t) : R→ R is a measurable bounded function.
(2) ui(t) is 2π-periodic, i.e. ui(t) = ui(t+ 2π),∀t ∈ R;

(3) ui(t) has zero mean on one period, i.e.
∫ 2π

0
ui(t)dt=0.

Furthermore, suppose that the vector fields fi(x) in (2)
are differentiable. Then, we can associate a so-called Lie
bracket system with (2), namely

ẋ = f0(x) +
∑
1≤i<l
i<j≤l

[fi, fj ](x)γij , (3)

where we introduced

γij :=
ω

T

∫ T

0

∫ s

0

uj(kjωs)ui(kiωp) dp ds, (4)

with T = 2π
ω LCM(k−11 , k−12 , ..., k−1l ).

The distance between the trajectory of the input-affine
system (2) and the trajectory of the associated Lie bracket
system (3) can be characterized by the following Lemma:

Lemma 6. Let R ⊆ Rn be an open convex set, and
suppose that the vector fields fi(x) : R → Rn are of
class C2. Furthermore, assume that, ∀i, j ∈ {0, 1, ..., l},
the vector fields fi(x) and the Jacobian matrices ∂fi(x)

∂x

and ∂
∂x

(
∂fi(x)
∂x fj(x)

)
are bounded on every open bounded

set A ⊆ R. Let tf ∈ R>0 and the bounded set V ⊆ R
be such that the trajectory of system (3), with initial
condition x(0) ∈ V, is unique and absolutely continuous for
t ∈ [0, tf ]. Furthermore, assume that the setR is positively
invariant for system (2). Then, under Assumption 5, for
every D ∈ R>0, there exists an ω∗ ∈ R>0 such that, for
all ω ∈ (ω∗,∞), t0 ∈ R and x0 ∈ V, the trajectories of
systems (2) and (3), starting at x0 = x0 satisfy

||x(t)− x(t)|| < D,∀t ∈ [t0, t0 + tf ]. (5)

Proof. The proof is reported in Appendix A.

A direct consequence of Lemma 6 is that the stability
property of the input-affine system (2) can be deduced
from the stability property of its associated Lie bracket
system (3). Such a result is stated in the following Lemma:
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Lemma 7. Let S ⊂ Rn be a compact set andR ⊆ Rn be an
open convex set such that S∩R is non-empty. Suppose that
the vector fields fi(x) : R → Rn are of class C2 and that,
∀i, j ∈ {0, 1, ..., l}, the vector fields fi(x), and the Jacobian

matrices ∂fi(x)
∂x and ∂

∂x

(
∂fi(x)
∂x fj(x)

)
are bounded on every

open bounded set A ⊆ R. Furthermore, let the set S
be regionally uniformly asymptotically stable in R for
system (3) and let system (2) be positively invariant
in R. Then, under Assumption 5, the set S is semi-
regionally practically uniformly asymptotically stable in
R for system (2), with the parameter ω−1.

Proof. The proof is given in Appendix B. �
Remark 8. Lemma 7 differs from Lemma 1 of Dürr et al.
(2013b), since the vector fields are only defined in a region
of Rn. Furthermore, it is based on a slightly different
definition of stability. The need of such extension is demon-
strated in the sequel.

3. PROBLEM STATEMENT

In this section, the problem addressed in this paper is
formally stated.

Consider the following constrained optimization problem

min
x∈Rn

h(x) s.t. g(x) ≤ 0, (6)

where the functions h(x) and g(x) satisfy the following
Assumption:

Assumption 9. The cost function h(x) is strictly convex
and belong to class C2. Furthermore, the constraint g(x)
is a convex function of class C2.

Remark 10. Assuming strict convexity of the cost function
is quite standard in constrained extremum seeking in order
to obtain non-local stability results (see e.g. Dürr et al.
(2013b), Grushkovskaya and Ebenbauer (2016) or Guay
et al. (2015)), as we aim for in this work.

In the framework of this paper, we consider that x is
governed by the control system ẋ = u, and we assume
that the cost function h(x) and the constraint g(x) are
mathematically unknown. The only information available
is the value of h(x(t)) and g(x(t)), at any time t.

Our aim is to steer x(t) towards the solution of (6), while
ensuring that

g(x(t)) ≤ β−1,∀t ≥ t0, (7)

where β ∈ R>0 is a user-defined value.

4. MAIN RESULTS

To address the problem, two main steps will be followed.
Firstly, we will assume that the gradients of both the
cost function and the constraint are available. Based on
a modified barrier function and a saddle point dynamics,
a control law will be designed to solve (6)-(7). Secondly,
the Lie bracket formalism (Section 2.2) will be used to
approximate this control law, by only using the on-line
measurements of the cost and the constraint.

4.1 Saddle Point Dynamics with Modified Barrier Functions

To tackle the problem (6)-(7), we will make use of the
so-called modified barrier function. Let Ω := {x ∈ Rn :

−βg(x) + 1 > 0}. The modified barrier function L(x, λ) :
Ω × R>0 → R, associated with (6), is defined by (see e.g.
Pan (1990) or Polyak (1992))

L(x, λ) = h(x)− λβ−1 log(−βg(x) + 1). (8)

L(x, λ) can thus be seen as a shifted barrier function since,
for λ ∈ R>0, it tends to infinity as g(x) tends to β−1.
Furthermore, L(x, λ) can also be seen as the Lagrangian
of the following constrained optimization problem

min
x∈Rn

h(x) s.t. β−1 log(−βg(x) + 1)≥0, (9)

which is equivalent to (6). Therefore, to solve problem (6),
it is sufficient to steer x to a saddle point of (8) (see e.g.
Rockafellar (1970)).

A way to achieve this objective is to implement the saddle
point dynamics proposed in Dürr et al. (2013b),{
ẋ = −ρx∇xL(x, λ)

λ̇ = ρλλ∇λL(x, λ) = −ρλλβ−1 log(−βg(x) + 1)
, (10)

with ρx ∈ R>0 and ρλ ∈ R>0.

As stated in the following Theorem, system (10) also
enforces (7):

Theorem 11. Let Ω := {x ∈ Rn : −βg(x) + 1 > 0}.
Furthermore, let SL ⊂ Ω × R≥0 be the set of all saddle
points of L(x, λ), defined in (8). Assume that SL is non-
empty and compact. Then, under Assumptions 9, SL is
regionally uniformly asymptotically stable in Ω× R>0 for
system (10).

Proof. The proof is given in Appendix C. �
Remark 12. It can be seen from the proof of Theorem 11
that extending the approach to handle several constraints
is not straightforwards. In particular, proving the positive
invariance of x in Ω is not trivial, due to the possible
interaction between the constraints.

Note that log(−βg(x)+1) in (10) is not defined for g(x) ≥
β−1. This may represent a drawback when ∇xL(x, λ) is
mathematically unknown, and has to be estimated, as it is
the case in extremum seeking. Indeed, the estimated value
of ∇xL(x, λ) has to ensure that g(x(t)) < β−1,∀t ≥ t0.
This may lead to a very restrictive set of admissible
values for the extremum seeking parameters (e.g. ω).
Furthermore, this set of admissible values is a priori
unknown by the user. To alleviate this issue, we propose

to introduce the factor
(
−βg(x)+1

1+(−βg(x)+1)

)2
in the dynamics of

(10), namely we consider
ẋ = −ρx

(
−βg(x) + 1

1 + (−βg(x) + 1)

)2

∇xL(x, λ)

λ̇ = ρλλ

(
−βg(x) + 1

1+(−βg(x)+1)

)2

∇λL(x, λ)

, (11)

with ρx ∈ R>0 and ρλ ∈ R>0. From (11), one may observe
that, whatever the estimated value of∇xL(x, λ), if g(x0) <
β−1, then g(x(t)) < β−1, ∀t ≥ t0. In the next section,
we will use this property to design an extremum seeking
system, in the form of (2), whose associated Lie bracket
system is (11), and that ensures the positive invariance of
(x, λ) in Ω× R>0, for all ω ∈ R>0.

The next Theorem precises the properties of system (11):

Theorem 13. Let Ω := {x ∈ Rn : −βg(x) + 1 > 0}.
Furthermore, let SL ⊂ Ω × R≥0 be the set of all saddle
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points of L(x, λ), defined in (8). Assume that SL is non-
empty and compact. Then, under Assumptions 9, the set
SL is regionally uniformly asymptotically stable in Ω×R>0

for system (11).

Proof. The only difference between systems (10) and (11)

is the presence of the scaling factor
(
−βg(x)+1

1+(−βg(x)+1)

)2
in the

dynamics of each state variable. It was proved in Theorem
11 that system (10) is positively invariant in Ω × R>0.
Accordingly, at every point (x, λ) of the trajectory of

system (10), the vector [ẋT , λ̇T ]T of systems (10) and (11)
have the same direction. Starting with the same initial
conditions, the trajectories of the two systems ((10) and
(11)) are therefore passing by the same values of (x, λ).
The properties of stability, boundedness and convergence
are thus identical for systems (10) and (11). �

Since the saddle points of L(x, λ) are the solutions of the
optimization problem (6), Theorem 13 guarantees that the
trajectories of system (11) asymptotically converge to the
solution of (6), while fulfilling (7).

4.2 A Lie Bracket Approximation

In the previous section, we proposed the gradient-based
system (11), that asymptotically converges to the solution
of (6), while satisfying (7). However, the implementation
of this system requires the knowledge of ∇xL(x, λ). In
this section, the Lie bracket formalism is exploited to
design an extremum seeking system that approximates the
trajectory of (11), by only combining time-periodic signals
with the on-line measurements of h(x) and g(x).

The goal is therefore to select the vector fields fi(x) to-
gether with the signals ui(t) in (2) such that the associated
Lie bracket system coincides with (11). As formally proved
in the next Theorem, a possible extremum seeking system
is


ẋi =

√
2ρxωki

−βg(x) + 1

1+(−βg(x)+1)
cos(L(x, λ)+kiωt)

λ̇ = −ρλλ
(
−βg(x) + 1

1+(−βg(x)+1)

)2
log(−βg(x) + 1)

β

,

(12)
with i ∈ {1, 2, .., n}, ω ∈ R>0, and ki ∈ Q>0, with ki 6= kj
for i 6= j.

It can be noticed that (12) is positively invariant in Ω ×
R>0. In virtue of Lemma 7 and Theorem 13, this guaran-
tees that the trajectory of the designed extremum seeking
practically asymptotically converges to the solution of (6),
while satisfying (7).

The stability property of system (12) is formalized in the
following Theorem:

Theorem 14. Consider system (12). Let Ω := {x ∈ Rn :
−βg(x) + 1 > 0}, and suppose that Assumption 9 holds.
Then, the Lie-bracket system associated with (12) is (11).
Furthermore, let SL ⊂ Ω × R>0 be the set of all saddle
points of L(x, λ), defined in (8), and suppose that SL
is non-empty and compact. Then, under Assumption 9,
SL is semi-regionally practically uniformly asymptotically
stable in Ω×R>0 for system (12), with the parameter ω−1.
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Fig. 1. Simulation of the extremum seeking system (12)
with the constrained optimization problem (13): Evo-
lution of x1(t) (—————————————————) and x2(t) (—————————————————), Solution of the
optimization problem (13) x∗1 (—————————————————) and x∗2 (—————————————————).
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(b) β = 2

Fig. 2. Simulation of the extremum seeking system (12)
with the constrained optimization problem (13): Evo-
lution of h(x(t)) (—————————————————), Solution of the optimization
problem (13) h∗ (—————————————————).

Proof. The proof is reported in Appendix D.

5. SIMULATION RESULTS

To illustrate the effectiveness of the proposed extremum
seeking system (12), we consider the constrained optimiza-
tion problem

min
x∈R2

h(x) := (x1 − 4)2 + x22 + 96

s.t. g(x) := x21 + x22 − 4 ≤ 0,
(13)

whose solution is h∗ = 100, with (x∗1, x
∗
2) = (2, 0).

To perform the simulation, the following parameters are
selected: ω = 100rad/s, k1 = 1, k2 = 1.3, ρx = 0.64,
ρλ = 10, x0 = [1, 0.75]T and λ0 = 5.

In Figure 1, it can be observed that the cost inputs
converge in a neighborhood of the constrained minimizer
(x∗1, x

∗
2) = (2, 0). Accordingly, one can see in Figure 2 that

the cost converges in a neighborhood of its constrained
minimum, i.e. h∗ = 100. In Figure 3, one can also verify
that the constraint is never violated of more than β−1.
In agreement with Theorem 14, one can observe that,
the larger the value of β, the smaller the violation of the
constraint.

5.1 Non-Steady State Behavior

To conclude the study of the proposed approach, let us now
consider that the cost function is associated with a dynam-
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(b) β = 2

Fig. 3. Simulation of the extremum seeking system (12)
with the constrained optimization problem (13): Evo-
lution of the constraint g(x(t)) (—————————————————).

ical system. Namely, consider the following constrained
optimization problem

min
χ∈R2

c(χ) := (0.6χ3
1 − 4)2 + 0.25χ6

2 + 96

s.t. γ(χ) := 0.36χ6
1 + 0.25χ6

2 − 4 < 0,
(14)

associated with the dynamical system{
χ̇1 = −150χ3

1 + 250x1
χ̇2 = −50χ3

2 + 100x2
. (15)

The aim is now to steer system (15) to a steady-state
value that solves (14), while ensuring that γ(χ(t)) ≤ β−1,
∀t ≥ t0. Note that the steady-state optimization problem
corresponding to (14)-(15) is nothing but (13).

To achieve this objective, we will use (12) with γ(χ) and
c(χ) instead of g(x) and h(x), respectively. Furthermore,
we will introduce a small parameter µ in (12) to ensure
a time-scale separation between the χ-dynamics and the
extremum seeking system. Namely, we will consider the
extremum-seeking system

ẋi = µ
√

2ρxωki
−βγ(χ)+1

1+(−βγ(χ)+1)
cos(L1(χ, λ)+µkiωt)

λ̇ = −µρλλ
(
−βγ(χ)+1

1+(−βγ(χ)+1)

)2
log(−βγ(χ) + 1)

β
,

(16)
with i ∈ {1, 2} and L1(χ, λ) :=c(χ)−λβ−1 log(−βγ(χ)+1).

Although the rigorous analysis of this case is outside the
scope of this paper, the following reasoning is possible. For
µ sufficiently small, the x and λ-dynamics are much slower
than the χ-dynamics. Therefore, if χ0 is close to its steady
state value l(x0), χ(t) will remain close to its steady state
value l(x(t)), at all time. Hence, γ(χ(t)) ≈ g(x(t)) and
L1(χ(t), λ(t)) ≈ L(x(t), λ(t)), at all time. The trajectory
of system (16) will thus approximate the trajectory of
system (12), with the change of time scale t′ = µt. Since
the trajectory of system (12) is positively invariant in
the feasible region Ω, this implies that, by selecting µ
sufficiently small, the x-trajectory of system (16) will also
remain in Ω and practically asymptotically converge to
the solution of (13). Furthermore, if χ0 is sufficiently
close to its steady state value and µ is sufficiently small,
||γ(χ(t))− g(x(t))|| will be sufficiently small to result in
γ(χ(t)) < β−1, ∀t ≥ t0.

To perform the simulation, we use the same parameters as
the ones used for the static case, and we select χ0 = [1, 1]T

and µ = 0.5. In Figure 4, it can be noticed that the
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(a) Evolution of c(χ(t)) (—————————————————)
and solution of (13) (—————————————————)
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(b) Evolution of γ(χ(t)) for
β = 2

Fig. 4. Simulation of the extremum seeking system (16)
with the constrained optimization problem (14)-(15).

constraint is never violated more than β−1 and the cost
converges in a neighborhood of its steady-state constrained
minimum, i.e. h∗ = 100. As expected, the trajectories of
c(χ(t)) and γ(χ(t)) are close to the ones of h(x(t)) and
g(x(t)), respectively (cf. Figures 2 and 3).

6. CONCLUSION

In this paper, we designed a novel extremum seeking
system to solve constrained optimization problems. As a
first result, we obtain systems (10) and (11), based on a
modified-barrier function and a saddle point dynamics. We
showed in Theorems 11 and 13 that the proposed systems
satisfy the maximal violation of the constraint (7) for all
time. As a second result, the Lie bracket approximation
theory was used to approximate (11), by combining time-
periodic signals with the on-line measurement of both the
cost and the constraint. The obtained extremum seeking
scheme (12) was proved in Theorem 14 to be able to
steer the cost input towards the value that minimizes
the cost under a single convex constraint, while allowing
to define the maximal violation of the constraints during
the whole transient phase. Its effectiveness has also been
demonstrated in simulation. Future works will notably
consider the case of multiple constraints and aim to
improve the steady-state performances, by making use of
adaptive dither amplitudes.
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Appendix A. PROOF OF LEMMA 6

The difference between the assumptions of Lemma 6 in
this paper and Lemma 1.1 in Labar et al. (2018a) is
that the vector fields are only defined, and of class C2,
in a region R ⊆ Rn, instead of being defined, and
of class C2, in Rn. However, since we assumed that
the input-affine system is positively invariant in R, the
Chen-Fliess expansion of its trajectory can be performed
as in (22)-(38), Appendix A of Labar et al. (2018a).
Furthermore, since the trajectory of the Lie bracket system
(3) is assumed to be absolutely continuous, there exists
a bounded set W1 ⊆ R that contains the trajectory of
system (3) on the interval t ∈ [0, tf ], for all x0 ∈ V. The
set R being convex, there exists thus a bounded convex

set W : W1 ⊆ W ⊆ R such that x(t) ∈ W,∀t ∈
[0, tf ]. Let Wx : UWR (D). Since ∀i, j ∈ {0, 1, ..., l}, the

vector fields fi(x) and the Jacobian matrices ∂fi(x)
∂x and

∂
∂x

(
∂fi(x)
∂x fj(x)

)
are bounded on every open bounded set

A ⊆ R, the different remainders appearing in the Chen-
Fliess expansion can be bounded as in (41)-(52), Appendix
A of Labar et al. (2018a) for all x ∈ Wx. Finally, sinceWx

is a convex set, the assumption that ∀i, j ∈ {0, 1, ..., l},
the Jacobian matrices ∂fi(x)

∂x and ∂
∂x

(
∂fi(x)
∂x fj(x)

)
are

bounded on every open bounded set A ⊆ R implies that
the vector fields fi(x) and the Lie brackets [fi(x), fj(x)]
are locally Lipschitz onWx. Thus, the bounds obtained in
(53)-(56), Appendix A of Labar et al. (2018a) also hold,
and the closeness of trajectories (5) is therefore obtained.
�

Appendix B. PROOF OF LEMMA 7

To prove Lemma 7, we refer to the three conditions of
sRPUAS given in Definition 4. The proof follows thus a
similar reasoning to the proof of Lemma 2 in Dürr et al.
(2013b). The difference comes from the use of a slightly
more general definition of sRPUAS.

Let δV ∈ R>0 and δB ∈ R>0 be arbitrary, but fixed.

Stability. Let δ′B∈(0, δB). From the stability property of
the Lie bracket system (3), there exists a δ′Q ∈ R>0 such

that, for every t0∈R, if x(t0)∈USR(δ′Q) then x(t)∈USR(δ′B),
∀t≥ t0.
Select now δ′′Q ∈ (0, δ′Q). From the uniform asymptotic

convergence of the Lie bracket system (3), there exists a
time t1 ∈ R>0 such that, for all t0 ∈ R, if x(t0) ∈ USR(δ′Q)

then x(t) ∈ USR(δ′′Q), ∀t ≥ t0 + t1. Let ω∗S ∈ R>0 come

from Lemma 6, with tf = t1, V = USR(δQ′) and D =
min

{
δB − δ′B , δ′Q − δ′′Q

}
. The positive invariance of system

(2) in R allows then to conclude that, for all ω ∈ (ω∗S ,∞)
and t0 ∈ R, if x(t0) ∈ USR(δ′Q), then i)x(t) ∈ USR(δB),

for all t ∈ [t0, t0 + tf ] and ii)x(t0 + tf ) ∈ USR(δ′Q). Since

x(t0 + tf ) ∈ USR(δ′Q), the same reasoning can be conducted
again, implying that with the obtained values of ω, it holds
x(t) ∈ USR(δB),∀t ≥ t0. Therefore the stability part is
concluded with δQ := δ′Q.

Boundedness. From the boundedness property of the Lie
bracket system (3), there exists a δW ′ ∈ R>0 such that,
for every t0 ∈ R, if x(t0) ∈ USR(δV ) then x(t) ∈ USR(δ′W ),
∀t ≥ t0.
Let δV ′ ∈ (0, δV ). From the uniform asymptotic conver-
gence of the Lie bracket system (3), there exists a time
t1 ∈ R>0 such that, for all t0 ∈ R, if x(t0) ∈ USR(δV ) then
x(t) ∈ USR(δV ′), ∀t ≥ t0 + t1.
Let ω∗B come from Lemma 6, with tf = t1, V = USR(δV )
and D = δV − δV ′ . The positive invariance of system (2)
in R allows then to conclude that, for all ω ∈ (ω∗B ,∞)
and t0 ∈ R, if x(t0) ∈ USR(δV ), then i)x(t) ∈ USR(δ′W +D),
for all t ∈ [t0, t0 + tf ] and ii)x(t0 + tf ) ∈ USR(δV ). Since
x(t0 + tf ) ∈ USR(δV ), the same reasoning can be conducted
again, implying that with the obtained values of ω, it holds
x(t) ∈ USR(δ′W + D),∀t ≥ t0. Therefore the boundedness
part is concluded by selecting δW := δ′W +D.
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Practical Convergence. From the Stability part, we
know that there exist a δQ ∈ R>0 and an ω∗S ∈ R>0 such
that, for every t0 ∈ R and ω ∈ (ω∗S ,∞), if x(t0) ∈ USR(δQ)
then x(t) ∈ USR(δB), ∀t ≥ t0.
Let δQ′ ∈ (0, δQ). From the uniform asymptotic conver-
gence of the Lie bracket system (3), there exists a time
t1 ∈ R such that, for every t0 ∈ R, if x(t0) ∈ USR(δV )
then x(t) ∈ USR(δQ′), ∀t ≥ t0 + t1. Let ω∗C come from
Lemma 6, with tf = t1, V = USR(δV ) and D = (δQ −
δQ′). The positive invariance of system (2) in R allows
then to conclude that, for all ω ∈ (max {ω∗C , ω∗S} ,∞),
if x(t0) ∈ USR(δV ), then x(t0 + t1) ∈ USR(δQ) and hence
x(t) ∈ USR(δB), for all t ≥ t0 + t1.

The proof is therefore concluded by selecting ω∗ :=
max {ωS , ωB , ωC}. �

Appendix C. PROOF OF THEOREM 11

To perform the proof of Theorem 11, we proceed in two
steps. In Step 1, system (10) is proved to be positively
invariant in Ω × R>0. In Step 2, a Lyapunov function
candidate V (x, λ) : Rn × R>0 → R≥0 is introduced.

It is shown that V̇ (x, λ) ≤ 0,∀(x, λ) ∈ Ω × R>0 and
the LaSalle’s invariance principle is used to conclude the
regional asymptotic convergence of (x, λ) to SL.

Step 1. The positive invariance of λ in R>0 can be directly
deduced from the dynamics of system (10). To prove the
positive invariance of x in Ω, let us consider the function
VI : Rn → R≥0, defined as follows:

VI(x) := 0.5(−βg(x) + 1)2. (C.1)

Its time-derivative, along the trajectory of system (10), is

V̇I(x, λ) = −β(−βg(x) + 1)∇T g(x)

×
[
−ρx∇h(x)− ρxλ

∇g(x)

−βg(x) + 1

]
, (C.2)

or equivalently,

V̇I(x, λ) = βρx

[
λ ||∇g(x)||2+(−βg(x)+1)∇T g(x)∇h(x)

]
.

(C.3)
Let E := {x∈Rn : 0<−βg(x) + 1<0.5}. The x-trajectory
is continuous for system (10). Therefore, starting initially
in Ω, x cannot reach −βg(x) + 1 = 0, without entering in
E . Therefore, to prove the positive invariance of x in Ω for
system (10), it is sufficient to show that x cannot reach
−βg(x) + 1 = 0, starting in E .

From Assumption 9, the functions h(x) and g(x) belong
to class C2. Accordingly, since E is a bounded set, there
exists a MG ∈ R>0 such that supx∈E

∣∣∣∣∇T g(x)∇h(x)
∣∣∣∣ <

MG. Furthermore, since g(x) is convex (Assumption 9),
and since the optimization problem (6) is feasible, ∇g(x)
cannot vanish 1 in E . Accordingly, there exists a mg ∈ R>0

such that infx∈E ||∇g(x)||2 > mG. Therefore, (C.3) can be
lower bounded as

V̇I(x, λ) ≥ βρx [λmG − (−βg(x)+1)MG] , (C.4)

∀x ∈ E , λ ∈ R>0. Accordingly, it holds that, if (x, λ) ∈ E×
R>0 and −βg(x)+1 < λmGM

−1
G , then V̇I(x, λ) > 0. Since

1 Otherwise, it would hold g(x) ≥ 0.5β−1, ∀x ∈ Ω, which contradicts
the feasibility of the optimization problem

λ is positively invariant in R>0 and λ̇(t) > 0 for x ∈ E , one
can thus conclude that x cannot reach −βg(x) + 1 = 0,
starting in E , concluding the positive invariance of system
(10) in Ω× R>0.

Step 2. Let (x∗, λ∗) ∈ SL. Inspired by Dürr et al. (2013b)
and Grushkovskaya and Ebenbauer (2016), the following
Lyapunov function candidate V (x, λ) : Rn × R>0 → R≥0
is considered

V (x, λ) = 0.5ρ−1x (x− x∗)T (x− x∗) + ρ−1λ T (λ, λ∗), (C.5)

with

T (λ, λ∗) =


λ if λ∗ = 0

λ− λ∗ + λ∗ log

(
λ∗

λ

)
if λ∗ > 0

. (C.6)

Its time-derivative, along the trajectory of system (10), is

V̇ (x, λ)=−(x−x∗)T∇xL(x, λ)+(λ−λ∗)∇λL(x, λ). (C.7)

From Assumption 9, the functions h(x) and g(x) are
strictly convex and convex, respectively. Therefore, the
following inequality holds (cf. first order Taylor expansion)

L(x∗, λ) ≥ L(x, λ) + (x∗ − x)T∇xL(x, λ), (C.8)

∀x ∈ Ω, λ ∈ R≥0. Furthermore, since L(x, λ) is affine in λ,
one has

L(x, λ∗) = L(x, λ) + (λ∗ − λ)∇λL(x, λ), (C.9)

∀x ∈ Ω, λ ∈ R≥0. Substituting (C.8) and (C.9) in (C.7)
yields

V̇ (x, λ) ≤ L(x∗, λ)− L(x, λ∗), (C.10)

∀x ∈ Ω, λ ∈ R>0. Since (x∗, λ∗) is a saddle point of L(x, λ),
it also holds (cf. Definition 1)

L(x∗, λ) ≤ L(x∗, λ∗) ≤ L(x, λ∗),∀x ∈ Ω, λ ∈ R≥0. (C.11)

Accordingly, V̇ (x, λ) ≤ 0,∀x ∈ Ω, λ ∈ R>0. Combining
this result with the compactness of the level sets of V (x, λ)
and the positive invariance of system (10) in Ω × R>0

concludes the stability and boundedness of SL in Ω×R>0

for system (10) (see Definition 4). To prove the regional
asymptotic convergence of system (10) to SL, we will refer
to the LaSalle’s invariance principle and show that the set
of points (x, λ) ∈ Ω × R>0 such that V̇ (x, λ) = 0 do not
contain any complete trajectory of system (10), except SL.

Since h(x) and g(x) are strictly convex and convex, re-
spectively, the function L(x, λ∗) is strictly convex. It re-
sults thus L(x∗, λ∗) < L(x, λ∗), ∀x ∈ Ω\{x∗}. Accord-
ingly, referring to (C.11), L(x∗, λ) =L(x, λ∗) implies that
x = x∗. Therefore, the set of points (x, λ) ∈ Ω × R>0

such that V̇ (x, λ) = 0 satisfy the equality L(x∗, λ) =
L(x∗, λ∗), namely λ log(−βg(x∗) + 1) = λ∗ log(−βg(x∗) +
1). Since (x∗, λ∗) ∈ SL, the previous equality reduces to
λ log(−βg(x∗)+1) = 0. Therefore, the set of points (x, λ) ∈
Ω × R>0 such that V̇ (x, λ) = 0 is SV := {(x, λ) ∈ Ω ×
R>0 : i)x = x∗; ii)λ log(−βg(x∗) + 1) = 0}. Referring to
system (10), the only complete trajectories in SV are such
that ∇xL(x∗, λ) = 0, and hence are the points satisfying
the KKT conditions (Definition 2), which are precisely the
saddle points of L(x, λ) (Rockafellar, 1970), concluding the
proof. �

Appendix D. PROOF OF THEOREM 14

In this section, the proof of Theorem 14 is carried out. To
do so, three main steps are followed. In Step 1, system
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(12) is rewritten in the form of (2). Referring to (2)-
(3), it is then shown, in Step 2, that the Lie bracket
system associated with (12) is (11). In Step 3, the stability
property of system (12) is finally proved, by combining
Lemma 7 with Theorem 13.

Step 1. Using the trigonometric identity cos(a + b) =
cos(a) cos(b) − sin(a) sin(b), one may rewrite the x-
dynamics of (12) as

ẋ =

2n∑
i=1

√
ωFi(x)ui(kiωt), (D.1)

with

ui(t) =

{
cos(t) 1 ≤ i ≤ n
sin(t) n < i ≤ 2n

, (D.2)

ki = ki−n for n < i ≤ 2n, (D.3)

and

Fi(x)=



√
2ρxki

−βg(x) + 1

1 + (−βg(x) + 1)
cos(L(x, λ))ei,

1 ≤ i ≤ n

−
√

2ρxki
−βg(x) + 1

1 + (−βg(x) + 1)
sin(L(x, λ))ei−n,

n < i ≤ 2n

.

(D.4)
Taking this result into account, (12) can be written in the
form of (2), namely[

ẋ

λ̇

]
= f0(x, λ) +

2n∑
i=1

√
ωfi(x, λ)ui(kiωt), (D.5)

with

f0(x, λ)=−ρλλ
(
−βg(x)+1

1+(−βg(x)+1)

)2
log(−βg(x)+1)

β
en+1,

(D.6)
and fi(x, λ) = [FTi (x), 0]T .

Step 2. From (2)-(3), the Lie bracket system associated
with (D.5) (and hence with (12)) is given by[

ẋ

λ̇

]
= f0(x, λ) +

∑
1≤i<2n
i<j≤2n

[fi(x, λ), fj(x, λ)]γij . (D.7)

Referring to the definition of γij , given in (4), together
with (D.2) and (D.3), one has

γij =

{
0.5k−1i 1 ≤ i ≤ n, j = i+ n

0 else
. (D.8)

Accordingly, the Lie bracket system associated with (12)
is[
ẋ

λ̇

]
= f0(x, λ) + 0.5k−1i

∑
1≤i≤n

[fi(x, λ), fi+n(x, λ)]. (D.9)

From (D.4), one gets

[fi, fi+n](x, λ)=−2ρxki

(
−βg(x) + 1

1+(−βg(x)+1)

)2
∂L(x, λ)

∂xi
ei.

(D.10)
Therefore (D.9) reduces to

ẋ = −ρx
(

−βg(x) + 1

1 + (−βg(x) + 1)

)2

∇xL(x, λ)

λ̇ = −ρλλ
(
−βg(x) + 1

1+(−βg(x)+1)

)2
log(−βg(x) + 1)

β

,

(D.11)

which is nothing but (11), concluding the first part of the
statement.

Step 3. We know from Theorem 13 that SL is regionally
uniformly asymptotically stable in Ω × R>0 for system
(11). Since Ω×R>0 is positively invariant for system (12),
Lemma 7 concludes the semi-regional uniform practical
asymptotic stability of SL in Ω × R>0 for system (12),
with the parameter ω−1. �
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