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Data-driven inference of passivity properties
via Gaussian process optimization

Anne Romer, Sebastian Trimpe and Frank Allgéwer

Abstract— Passivity is an important concept in control design
as it pertains to stability properties of the closed loop. We
propose a framework to determine to which extent a dynamic
system is or is not passive from data. In particular, we
develop a probabilistic approach based on Gaussian processes
to underestimate the input feedforward passivity index from
experiments with measurement noise. We also show how prior
knowledge on the input-output behavior can be incorporated
in this framework. Besides the offline approach, we present an
iterative scheme that in expectation tightens the lower bound
on the feedforward passivity index with every additional data
sample and gives an upper bound on the conservatism of the
resulting passivity measure.

I. INTRODUCTION

With the growing complexity of engineering systems, the
modeling process becomes a more and more time-consuming
task, which requires expert knowledge. On the other hand,
modern technology allows for gathering large amounts of
data about systems and processes. Therefore, there has been
a rising interest in learning controllers directly from data
[1]. However, while model-based approaches come with an
elaborate theory that offers analyzing tools for stability and
performance guarantees, such guarantees are still lacking for
many data-driven methods. This lack of guarantees often
prevents the application of data-driven methods to real-world
scenarios and safety-critical systems, which is therefore an
active field of research.

One complementary approach to learning controllers di-
rectly from data is to determine certain system properties
from data first, which are then leveraged to design a control-
ler as depicted in Fig. 1. Knowledge of the L4-gain, passivity
properties or conic relations, for example, allow for the direct
application of well-known feedback theorems to design a
controller with guarantees for the closed-loop behavior [2],
[3]. Hence, learning certain system properties can provide
many of the desired advantages of data-driven controllers
while still providing guarantees for the closed-loop.

Existing approaches to learn system properties from input-
output data samples can be found in [4]-[11]. However, most
of these approaches are only applicable for learning passivity
properties or the operator gain of linear time-invariant (LTT)
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Fig. 1. This work aims to identify passivity properties from data tuples,
which are already in storage (offline methods, cf. Sec. III), or from actively
sampling additional data (online methods, cf. Sec V). With knowledge on
the passivity of the unknown system, well-known feedback theorems can
be leveraged for designing controllers with guarantees for the closed-loop
input-output behavior [2], [3].

systems [4]-[8], and only few consider nonlinear systems
[9]-[11]. In [9], the authors address the issue of validating
an operator gain from input-output data and extend some
insights also to nonlinear operators. In [10] and [11], further
ideas for determining system properties such as the operator
gain, passivity measures and conic relations of a general
nonlinear system from only input-output data are presented.
However, these techniques can be quite conservative or
require large amounts of input-output data.

Therefore, we develop a stochastic approach for deter-
mining to what extent a general nonlinear system is, or is
not, passive from input-output data, when the input-output
behavior is unknown. The proposed approach is based on
Gaussian processes and does not require identifying the exact
input-output relation. In contrast to prior work, the stochastic
setting allows for better data efficiency, for incorporating
prior system knowledge, and for handling measurement
noise. Finally, we use the uncertainty bound quantification of
the Gaussian process to introduce a customized active sam-
pling scheme to efficiently perform additional experiments
for learning passivity properties.

II. PROBLEM SETUP

We consider a single-input single-output, nonlinear and
discrete-time system [, which produces an output y for
an input u, as depicted in Fig. 2. H might represent a
complex plant, for which the modeling process by first
principles becomes a difficult and time-consuming task, or a
complex numerical model with no realization as differential
equations in closed form at hand. All admissible inputs and
corresponding outputs lie in some set &,) C R™. Usually,



U will contain signals with a certain energy or adhere to
certain smoothness conditions corresponding to a frequency
bound as both quantities are limited in most physical plants.

Passivity as a system property plays an important role
in systems analysis, stability studies and controller design,
especially for nonlinear systems [3], [12], [13]. We start
with a general input-output definition of passivity for H.
The system H is said to be passive if

(H(u),u) 20 (D

holds for all admissible inputs u € U, where (-,-) denotes
the Euclidean inner product. For input strict passivity, we
search for the largest v such that the inequality

(H (u), u) > v]|ul|? 2

is true for all admissible inputs u € U with [|-||= +/(,")
denoting the induced norm. For v > 0, H is said to be input
strictly passive. For v = 0, we retrieve the passivity condition
in (1). If v < 0, then H is not passive, but the parameter |v|
corresponds to the feedforward term that renders the system
passive. This parameter v is in general also referred to as
the input feedforward passivity index.

In order to determine to what extent the unknown system
H 1is or is not passive, we reformulate the input strict
passivity property into an optimization problem given by

min  p(u), (Hw),w) ,
weld,|ul|2#0 [lu]|?

with p : U\{0} — R. Since H : v — y is unknown,
we want to find an underestimate of v in (3) from input-
output data obtained from simulations or experiments. While
in simulations the numerical errors might usually be very
small, measurement noise in experiments oftentimes has
a non-negligible impact. Therefore, we consider the case
where the output signal is corrupted by additive Gaussian
white measurement noise. An extension to more general
noise models shall be part of future work. Performing one
experiment hence leads to one noisy input-output tuple
(ui,y; + ;) (cf. Fig. 2) with w; € U, y; = H(u;) and
e; = (ei(1) ei(2) ei(n))T, where we assume e;(t)
to be zero mean Gaussian white noise with variance o2.
Measurement noise on the output signal leads to noisy data-
based evaluations of p denoted by DV = {(u;, fi)}, with
(yi + ei, ui) )
fi= s . “)

i |2 i

The objective of this work is to develop a stochastic
approach for learning a lower bound on the input feedforward
passivity parameter v from finitely many noise-corrupted
data samples DV. Within the whole approach, the input-
output map H is unknown.

p(u) = 3)

V=

= p(u;) +

U Y yte

—

e

Fig. 2. System H maps any input u € U to the corresponding output y.
The measured output is corrupted by measurement noise e.
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IITI. INPUT-STRICT PASSIVITY VIA GAUSSIAN PROCESSES

In this section, we present an approach to learn a lower
bound on the input feedforward passivity index v from
available data in storage (offline approach). To find such
a lower bound on p, we model p as a Gaussian process
and employ Gaussian process regression to fit the model
from data. We start by briefly introducing the necessary
background on Gaussian processes before applying it to learn
passivity properties.

A. Gaussian process regression

A Gaussian process (GP) is defined as a probability
distribution over the space of functions p such that every
finite subset of function values are jointly Gaussian [14]. A
GP, denoted by GP(u(u), k(u, u')), is specified by its mean
and covariance functions

p(u) = Elp(u)]
k(u, u') = E[(p(u) — p(u))(p(u’) = p(u’))],

where p is the expected function value and the covariance
function k, also referred to as kernel, captures the covariance
between function values and is used to model uncertainty.
Probably the most common kernel choice in GP regression
is the squared exponential (SE) kernel given by

(Lamraoo) ©

where 0]% is the signal variance and A is a positive definite
matrix, often chosen to be a diagonal matrix of n squared
length scales A\?. These parameters of a kernel are called
hyperparameters. Every kernel typically has its own hyper-
parameters specifying properties of the underlying function
such as shape or smoothness, see [14] for details.

In GP regression, we predict the (normal) distribution of
function values p(u) for v € U based on previous data
tuples DN . With (4), we find that the noise on the function
evaluation of p from experiments has zero mean and variance

<ui7 6> Oc

v(ed) -
uil?) ™ Tl

Therefore, the likelihood for observations f; in (4) is

P (filp(u)) = N <P(“i>’ ||u||2> '

This leads to the standard closed form predictive posterior
mean and variance for noise with input dependent variance
[15], which reads

2

ke (u,u') = o exp

2

0.2

my(u) = E[p(u)|DV] = p(u) — ky(u)(Ky + )" oy

o (u) = Vip(u)|D"] (6)
=k(u,u) — ki (u)(Ky + 2N ey (u)

where ky(u)=(k(u,u1),... k(u,uy))', Ky € RV

with K;; = k(u, uj), pnv = (pl—u( 1),--- ,pN—M(uN))T,
Iy being the N-dimensional identity matrix and XY €
RY*N with £V = o2diag (Jlur]l =2, Juzl =2, .. Jlun || 72).
That is, the noise corruption on data tuples (u;,p;) is



Gaussian depending only on the energy of the input signal
and the variance of the measurement noise o2. Hence, the
influence of additive white Gaussian measurement noise can
be included in closed form into the standard GP regression.

Since the noise can become arbitrary large as the input
signal approaches zero, we need to require a minimum
energy of the input signal. This corresponds to requiring
a minimal signal to noise ratio, which is a common as-
sumption wherever measurement noise is taken into account.
Therefore, similar to [10], we restrict our attention to the
compact input set U’ = U\{u € R"|||ul|< ¢} with the
assumption that the true minimum of p does not lie within
the c-punctured set of .

B. Lower bound on v

The general idea on how to obtain a lower bound on v is
depicted in Fig. 3. We model p as a GP

p(u) ~ GP(u(w), k(u,u')).

Via GP regression, we obtain the posterior distribution of
p(u), u € U’, by conditioning on DY, represented by
posterior mean my(u) and standard deviation oy (u) as
given in (6). We define a confidence region my (u)£taon (u)
as a multiple of the standard deviation with oz > 0. Assuming
that the underlying function lies within these confidence
bounds, the minimum of the lower bound on the confidence
region yields a lower bound on the passivity parameter v,

Uy = min my(u) — aoy(u). (7)
uel’
The parameter « is hence a design variable that depends on
how conservative the estimate shall be, typically chosen to
be around o = 2.
For the presented problem setup, there are mainly three
reasons for choosing such a stochastic approach via GPs:

1) We can account for measurement noise. As shown
in Sec. III-A, if we assume additive white Gaussian
noise on the output signal, we retrieve additive white
Gaussian noise on the cost evaluation which is scaled
by the energy of the signal. This insight can be directly
incorporated into the GP regression in closed form.
Prior knowledge on the unknown system can be in-
corporated into the construction of the kernel and its
hyperparameters as shown in Sec. IV to improve the
learning rate and to decrease the required input-output
samples.

We potentially need fewer data points or receive a
tighter bound on the passivity measure since fewer
data points are required in regions of low probability
of a minimizer. Furthermore, additional samples can be
drawn in an efficient manner based on the probabilistic
description of p (cf. Sec. V).

2)

3)

In the following section, we present how to initialize the GP
regression, or more specifically, how to choose the kernel and
its hyperparameters from prior knowledge. Finally, Sec. V
introduces how one can sample additional data efficiently
from the probabilistic description of the cost function p.
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Fig. 3. Via GP regression, we learn a probability distribution of p(u) for

every u € U’ from data. From top to bottom, the posterior GP with 5,
6, and 9 data points is shown. We define a confidence region as a factor
« of the standard deviation . The minimum of the lower bound on the
confidence region yields a lower bound estimate on the passivity parameter
v. If additional experiments are performed, these are chosen according to the
probabilistic description of p for data efficient sampling (details in Sec. V).

IV. KERNEL DESIGN FOR INFERENCE OF INPUT-STRICT
PASSIVITY

For GP regression, we assume that p is a sample of the
GP specified by a chosen mean function and kernel. The
choice of the kernel is hence an integral step influencing not
only the learning speed, but also affecting the inferred values
of Un. By choosing the kernel and its hyperparameters,
one should hence include any prior knowledge about the
underlying function such as smoothness properties, length
scales and expected shape. Therefore, we present in this
section approaches on how to choose the kernel according to
such insights, incorporating the problem structure as a prior.

A. Smoothness of the kernel

We start by considering the choice of kernels according
to the estimated smoothness of the unknown input-output
system H. With application of the chain rule, whenever the
input-output operator u — H(u) is continuously differen-
tiable of order m denoted by H € C™, we know that
p : U — R is continuously differentiable of order m.
Two very common choices of kernels are the SE kernel
and the Matérn kernels, which could be a good starting
point dependent on the knowledge of the smoothness of
the unknown input-output operator H. The SE kernel (5)
is infinitely differentiable. This means that the GP with



this covariance function is ‘very smooth’ since it has mean
square derivatives of all orders [14]. The Matérn class of
covariance functions as presented in [14] is parameterized
by a smoothness parameter 17 > 0. The process p is k-times
mean square differentiable if and only if n > k. For n = %,
the Matérn kernel becomes very rough, whereas for 7 — oo
we retrieve the smooth SE kernel. Depending on m, one can
thus decide if the SE kernel is a good choice, or choose a
Matérn kernel, e.g., with n =& m

B. Lipschitz continuity

Another parameter that is often available or can be estima-
ted from data [10] is the Lipschitz constant. Let us consider
the case where the input-output operator is differentiable and
Lipschitz in the sense that || H (ug) — H (u1)||< L |jus —uq ||
and hence that

IDH(u)||< Ly Yuel', (®)

where DH denotes the Jacobian matrix of H and ||DH (u)||
denotes the induced matrix norm. With knowledge of Ly,
we can infer a Lipschitz constant of the optimization function
u — p(u) as follows.

Lemma 1: Assume (8) holds and H(0) = 0. Then there
is a Lipschitz constant L, < @ such that

lp(uz) = plu)l|< Lplluz — u].

Proof: We start by estimating the supremum of the
gradient of p : U’ — R by

H(u) + (DH(u)) " 2u’ H(u)u
O ES
[[wll? [[ufl*
DH T T
L (L) | JOHE) ] )
Jull \ [lull [[wll [Ju
< i4LH < 14LH.
[[ul c

The set {u € R"|||u||> ¢} is said to be C-quasiconvex,
with C' = 7, since any two points u;,u can be joined by
a curve y of length at most J|lu; — uz|| (e.g., an arc of a
circle). Integrating the gradient along such a curve can give
an upper bound on the Lipschitz constant by
IVp(u)l

llp(uz2) sup

s
= plu)][< 5 llus — uzll
ueR™; Jul| e

Hence, L, < Q”LH ]

From [16 Theorem 5], we know that if the covariance
kernel is at least four times differentiable and the mean
function is at least twice differentiable, then the sample
paths are Lipschitz continuous with high probability on a
bounded set of R™. However, since this result does not
provide quantitative information on how Lipschitz constant
and hyperparameters relate to each other, we will in the
following derive a more practical approach.

Generally, the overestimate of the Lipschitz constant from
Lemma 1 gives a (potentially conservative) estimate on how
the function values of two input signals u; and uo can differ.

32

underlying function
mean m y (u)

lower confidence bound

—
3 my (u) — aon(u)
~—
U o data point
fi,i=1,...,5
- slope of
lower confidence bound
u
Fig. 4. To find a lower bound the passivity measure, we are mainly

interested in the lower bound of the confidence region defined by « times
the standard deviation. One possible interpretation of a Lipschitz constant
on the underlying function p is the slope of the lower confidence bound at
a data point. This allows us to incorporate prior knowledge on the Lipschitz
constant via the prior on the derivative process.

This can be seen as a parallel concept to isotropic covariance
functions, where the covariance between u; and ugy is only
dependent on ||u; —uzl|. The SE as well as the Matérn cova-
riance class are isotropic covariance functions. Incorporating
a large Lipschitz constant would then correspond to choosing
the covariance of two close points to be small.

We are now interested in how exactly the prior of a GP can
be chosen to incorporate knowledge on Lipschitz continuity.
The idea is depicted in Fig. 4. With an upper bound on the
Lipschitz constant, we know an upper bound on the slope
at each point u. Therefore, in a neighborhood of any data
sample u;, we can restrict the confidence region to p(u;) —
L,llu—u;||< p(u) < p(u;) + L,yl|lu — u;]|. Hence, we want
to choose the prior in such a way, that the slope of the lower
confidence bound at a data point u; has the slope of this
Lipschitz constant L,. Thus, the Lipschitz constant leads us
to a specific condition on the prior of the derivative process.

The derivative of a GP is yet another GP since dif-
ferentiation is a linear operator [14]. In fact, since both
the expectation operator and the differentiation operator
are commutative, the derivative of the posterior mean is
equal to the mean of the distribution of derivatives [17].
The mean and covariance function of the derivative process
pa ~ GP(ug,kq) are thus defined by pq(u) = Vyu(u)
and kq(u,u') = V,Vyk(u,u). This insight allows us to
incorporate prior information in the derivative process.

Let us further consider the SE kernel (5) and a constant
prior mean function. The covariance function of a GP des-
cribing the derivative of a GP with SE kernel reads

VuVuk(u,w') = A" (I — (u—u')(u—u') TA™) k(u, o)
and hence
VuVu/k(m u’)|u:u/: A~

Since the Lipschitz constant should mark the border of
the confidence region, the hyperparameters A, of should
approximately be chosen such that



holds. In fact, for the SE kernel, a relation between the
Lipschitz constants and the ratio between prior variance
and lengthscales o;\; ' has also been mentioned in [18].
While this specific relation of hyperparameters and Lipschitz
constant considers the SE kernels, this approach can be trans-
ferred to other sufficiently differentiable isotropic kernels.

In some application scenarios, the estimate of the Lipschitz
constant of an input-output operator H might be an estimate
with non-negligible uncertainty, e.g. when obtained from
data. This uncertainty of the Lipschitz constant, modeled for
example as p(L,) = N (L,,0%), can again be incorporated
as a prior on the hyperparameters by choosing, e.g.,

nlly )

where 02 expresses the uncertainty in the estimate of the
Lipschitz constant L,. Such hyper-priors p(©) can then
be used to find the posterior over the hyperparameters by
optimizing maxe p(fi|u:, ©)p(0) [14].
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C. Parametric kernel design

In many applications, the unknown input-output system
can be decomposed into a part with only parametric un-
certainty and a general nonlinear part. For example, the
unknown input-output system can be composed of a linear
LTT system and nonlinear residuals leading to

p(u) = prri(u) + pae (). )

This provides us with additional structural information on
u — p(u), which can be incorporated into the kernel
design to improve the performance of the GP regression. For
scalar discrete-time LTI systems and a given input sequence
u(t),t =1,..., N, the input to output map reads

y(1) g 0 0 0\ [u(l)
: g1 9o 0 0 -
=| 9 g1 9o 0
y(n) In—-1 Gn-2 g1 9o u(n)

where g, K = 1,2,..., denotes the impulse response
sequence, which we consider unknown. This input-output
relation is in the following denoted by y = Gu. For such
LTT systems, the cost function ppr; hence reads

uf—&—“.—i-ufl T 90
uTGZu _ 12 U1U2+---.+UN—1UN 9.1 (10)
[l [[ul : '
U Unp 9n—1
h(u)

The vector h(u) can be interpreted as a set of fixed basis
functions in wu;, and g = (go,...,gn_1) ' as a set of a-priori
unknown parameters. We model g as a Gaussian random
variable, g ~ N\ (ug,Eg), with g4, for example, according
to some measured impulse response of the system, or zero
if no other information is available. The variance models
uncertainty about the impulse response and can also be used
to encode smoothness properties and other prior knowledge.
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From (9), with (10) and px. ~ GP(0,k(u,u’)) a ge-
neral GP, we then obtain another GP reading p(u) ~
GP (h(u) " pg, k(u,u’) + h(u) " Syh(u')) for which the pre-
dictions can be found in [14, p. 28]. While we presented
here some problem specific approaches on the kernel choice
for determining the input feedforward passivity index, there
exists a whole line of research on kernel methods for system
identification and function estimation more generally, see e.g.
[19] and the references therein.

V. ACTIVE SAMPLING SCHEME

In many applications, additional simulations or experi-
ments can be performed. This corresponds to actively sam-
pling additional data points (online method). In this section,
sampling schemes for choosing these additional data points
customized to learning a lower bound on the input feedfor-
ward passivity parameter are introduced and discussed.

In the present problem setup, the goal is to quickly receive
a tight estimate on the minimum of p. While n from (7)
yields the current lower bound estimate of the passivity
parameter v, it concurrently provides information where
an additional data point increases this lower bound. This
corresponds to choosing the next data point w1 such that
un+1 = argmin, o, Urcg(u) with

(1)

where Ujcp is called the Lower Confidence Bound (LCB)
acquisition function determining where the next query point
should be (analogous to Upper Confidence Bound (UCB)
[20] for maximization). This active sampling scheme is
illustrated in Fig. 3, where the next data point is chosen at the
current minimum of the lower confidence bound. For specific
choices of varying «, particular regret bounds are proven for
the UCB approach [21]. Since we are interested in a lower
bound with high probability, and hence the minimum of the
lower confidence bound, we choose a fixed a.

Another approach to receive a tight bound on v with high
data efficiency is to reduce the confidence region below the
minimum of p as quickly as possible. The corresponding
acquisition function according to the defined goal reads

Urce(u) = my(u) — aon(u),

Urvm(u) = max (Fy — my(v)
Z/{/

+aE[on11(v)| DY, uy1=u],0) dv.

12)

minimizing the expected confidence region below the ex-
pected minimum of p denoted by ¥y = min, ey my(u),
as depicted in Fig. 5. We will call this acquisition function
the Lower Variance Minimum (LVM) approach. Since the
variance only depends on wuyy; independently of fn.y1,
Elon+1(v)[DY, unyi1=u] = oni1(v,u), and hence (12)
simplifies to

Uvm(u) = max (/y — my (v) + aon+1(v,u),0) dv.
Z/l/

Both acquisition functions (11) and (12) are depicted in
Fig. 5. Both sampling approaches demonstrated comparable
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Fig. 5. Comparison of the two acquisition functions UCB and LVM applied
to the illustrative example pgx. While LCB from (11) samples at the current
lower bound on v, LVM from (12) tries to minimize the confidence region
below the current expected minimum.

Algorithm 1: Active sampling for learning passivity

Specify GP prior (cf. Sec. IV);
Specify confidence region by choosing o;
Specify stopping criteria € (cf. Prop. 2);
Initialize DY with set of prior data samples;
repeat
Update GP posterior (my, on) in (6);
Compute next input signal un41 via (11);
Perform experiment with w1 and calculate fn1;
Set DN = {DN, (uny1, fve1)}:
Set N=N+1;
until 20&0’]\771(1”\7) > €
return oyx_; in (7)

1
2
3
4
5
6
7
8
9

10
11
12

performance in terms of data efficiency in an initial compa-
rison. However, the acquisition function (11) is significantly
less expensive to compute. While a more comprehensive
comparison of both acquisition functions is left to future
work, (11) will be our preferential choice in the following.

Algorithm 1 summarizes the active sampling scheme in-
troduced above. The core approach that is used herein for
efficient sampling of the passivity function is essentially
Bayesian optimization. Bayesian optimization generally is
a global (black-box) optimization technique that builds a
probabilistic description (typically a GP) of the unknown
cost function and uses this to select next samples in an effi-
cient way [22]. Bayesian optimization has been successfully
applied in other learning-based control contexts, such as for
direct data-driven controller tuning, e.g. in [18], [23], [24].

We next prove some properties about the proposed appro-
ach. The following proposition shows that Algorithm 1 is
expected to improve the lower bound in each step.

Proposition 1: The lower bound on v from Algorithm 1
is in expectation monotonically increasing in the sense that,
given DV -1 at step N — 1,

E [on — onoa| DY > 0.
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Proof: We start by applying the linearity of the ex-
pectation operator, which directly yields E [Dy—0y 1| D]
=E [my(u)—my_ 1 (u)| DV —aE[ox(u)—oy 1 (u)| DV .
From [25], we know that oy(u) < oy_(u) holds
independently of the next drawn data sample (up, fn).
Furthermore, the expected value for the next data sample pxn
on the basis of DV~ is expressed by my_1(u). Therefore,
E [my(u)|DN =] = my_1(u) holds, and hence

E [my(u) — aon(u) — my—1(u) — OZO'N_l(U)|DN71]
= —aE [on(u) —on_1(u)| DV 1] > 0.

Since this must hold for all v € U/, it also holds for the
minimum and thus, E [vy — vy_1|DV ] > 0. [ |
Furthermore, by means of the stopping criteria € one can
choose how tight the lower bound on v shall be and bound
the conservatism of the resulting ¥ of Algorithm 1.
Proposition 2: When 2aoy(un+1) < € (stopping criteria)
is met, then the input feedfoward parameter v is maximally
€ larger than the lower bound resulting from Algorithm 1,
i.e. v — Uy < ¢, with a probability of at least ®(«), where

+2
O () e zdt.

T J—oc0
Proof: This follows directly from the marginalization
property of the GP with

P(p(un+1) <my(unt1) +aon(un+1)) = ®(a),

where & is the cumulative distribution function of the normal
distribution. [ ]

To calculate the actual probability mass below the resulting
estimate ¥y, one can use Monte Carlo Methods via sampling
from the GP or, for example, use the approach in [26] to
calculate the probability mass via discretization.

VI. EXAMPLE

We present a numerical example to illustrate the proposed
approach. To facilitate comparison, we adopt the example in
[10], the Van der Pol oscillator. The underlying system is
governed by i1 (t) = xo(t), i2(t) = 4(1 — 21 (t)?)xa(t) —
x1(t) —u(t), and y(t) = z1(¢), with £1(0) = 22(0) =0, H :
u +— y considering the (closed) unit interval ¢ € [0,1]. As
in [10], we restrict our input to a four dimensional subspace
V = span({ Py, P, P5, Py}) of Lo, P; being the first four
Legendre polynomials

Pi(t)=1, Py(t) =2t — 1,
Py(t) = 6t — 6t + 1, Py(t) = 20t> — 30t> + 12t — 1,

which constitute a four dimensional orthonormal basis. All
coefficients of the admissible input are bounded by b; = 5,
i=1,...,4, similar to [10] and we choose ¢ = 0.8 to retain
a meaningful signal to noise ratio.

We discretize the system with At = 0.001. The Gaussian
measurement noise on the discretized output signal has
zero mean and standard deviation o, 3. We define
the confidence region to be « 2 times the standard
deviation. Furthermore, we choose the SE kernel (5) due
to the smoothness of the example system. According to an
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Fig. 6. Applying the iterative approach introduced in Sec. V, we computed
lower bounds on the input feedforward passivity parameter of the example
problem in [10], a Van der Pol oscillator.

estimated upper bound on the Lipschitz constant from data
of approximately L, = 4.5, we choose the hyperparameters
tobe oy =1and \; =2/3 foralli=1,...,4.

The resulting lower bound on v is shown in Fig. 6, where
the values for different stopping criteria €;, ¢ = 1,...,6 are
highlighted with the corresponding upper confidence bound
obtained from Prop. 2. Starting at around 4810 data samples,
we receive a quite tight bound on the passivity parameter,
which never fails to underestimate the input feedforward
passivity parameter v = min, ez p(u). Moreover, all upper
bounds on the conservatism are valid upper bounds on v.
Hence, we receive a tighter bound with fewer data points
than [10], while also including measurement noise. However,
the computational cost is higher.

Varying the hyperparameters, similar ratios oy A; ! led to
similar results, while larger ratios generally required larger
amounts of data to meet the stopping criteria and smaller
ratios started to fail to underestimate v at some iterations.

The computational costs and the curse of dimensionality
are in general still open problems and a field of active rese-
arch for Bayesian optimization techniques. Some approaches
to Bayesian optimization with high-dimensional problems
are found in [22], including some results on identifying
relevant dimensions or exploiting sparsity. A tailored appro-
ach to decrease the computational complexity of Bayesian
optimization for passivity properties is left to future work.

VII. CONCLUSION

The presented approach based on GP regression and
Bayesian optimization is an attractive option for learning
passivity properties from data (offline or online) since it
allows for handling measurement noise, it admits incorpora-
ting prior knowledge, and, above all, it can be significantly
less conservative than a deterministic approach. The lower
number of necessary data points, however, comes at the cost
of higher computational expenses.
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