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Abstract: In this paper, we develop a new tube-based robust economic MPC scheme for linear
systems subject to bounded disturbances with given distributions. By using the error distribution in the
predictions of the finite horizon optimal control problem, we can incorporate stochastic information in
order to improve the expected performance while being able to guarantee strict feasibility. For this new
framework, we can provide bounds on the asymptotic average performance of the closed-loop system.
Moreover, a constructive approach is sketched in order to find an appropriate quadratic terminal cost
accepting a slight degradation of the average performance statement.
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1. INTRODUCTION

In the last decade,economicModel Predictive Control (MPC)
has received significant attention. While stabilizing MPC uses
a positive definite stage cost function to stabilize a given set-
point, the main focus of economic MPC is the optimization of
some general performance criterion, which possibly resembles
the economics of the considered system. To this end, different
settings and methods have been proposed in the literature (see,
e.g., Angeli et al. (2012), Diehl et al. (2011), Amrit et al. (2011),
Müller et al. (2013)).

In many practical applications, systems are affected by distur-
bances which can result in a degradation of performance and/or
a loss of feasibility. Therefore, different concepts have been
presented in the framework of MPC in order to deal with dis-
turbances. In robust MPC, bounded disturbances are taken into
consideration while aiming at the robust satisfaction of hard
constraints (see, e.g., Chisci et al. (2001), Mayne et al. (2005)).
In stochastic MPC, disturbances of stochastic nature, i.e., with
a given distribution, are considered. This stochastic informa-
tion can be used in order to improve performance. Moreover,
probabilistic constraints are typically considered instead of hard
constraints (see, e.g., de la Peña et al. (2005), Cannon et al.
(2009), Primbs and Sung (2009), Chatterjee et al. (2011)).

When considering economic stage cost functions for disturbed
systems, only few results can be found. In Huang et al. (2012),
a stability result for robust economic MPC is presented which
is based on a robust tracking of an a priori determined optimal
nominal trajectory. Broomhead et al. (2014) aim at stabilizing
an economically optimal steady-state despite disturbances. Lu-
cia et al. (2014) study a scenario based approach for economic
MPC in order to, among others, find guarantees for feasibility.
Another approach is presented in Bayer et al. (2014), where a
robust MPC framework is employed to guarantee robust con-
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straint satisfaction. In order to consider the influence of the dis-
turbances on the performance, the cost function is modified by
averaging the cost over all possible states within some invariant
set. Since no further assumption on the disturbances is imposed
other than boundedness, this averaging is done by weightingall
states in the invariant set equally.

In this paper, we show how additional stochastic information on
the disturbance, if available, can be used to improve closed-loop
performance in robust economic MPC. To this end, we consider
a robust MPC framework to guarantee robust constraint sat-
isfaction, and employ additional stochastic information within
the cost function to improve the performance. To this end, we
compute the exact prediction of the error set at each open-
loop time step and use the robust MPC approach presented in
Chisci et al. (2001) to guarantee robust feasibility. Moreover,
we compute the distribution of the error over these sets us-
ing the given distribution of the disturbance, and employ this
information within the finite horizon optimal control problem
by taking the expected value of the cost. We show that for
a particular assumption on the terminal cost, bounds on the
average performance of the closed loop can be derived which
resemble known results from both nominal economic MPC
and previous concepts on robust economic MPC. Moreover,
we derive a constructive approach for finding an appropriate
quadratic terminal cost (which leads to a slight degradation of
the original average performance statement).

The remainder of this paper is structured as follows. In Sec-
tion 2, we introduce the problem setup. The finite horizon op-
timal control problem is presented and discussed in Section3.
A bound on the closed-loop asymptotic average performance is
derived in Section 4, and in Section 5, we provide a constructive
approach for finding an appropriate quadratic terminal cost. The
setup is applied to a numerical example from process industry
in Section 6, and the paper is concluded in Section 7.

Notation:We denote byI≥0 the set of all non-negative integers
and byI[a,b] the set of all integers in the interval[a, b] ⊆ R.



For setsX,Y ⊆ R
n, the Minkowski set addition is defined by

X ⊕ Y := {x + y ∈ R
n : x ∈ X, y ∈ Y }; the Pontryagin

set difference is defined asX ⊖ Y := {z ∈ R
n : z +

y ∈ X, ∀y ∈ Y }.

2. PROBLEM SETUP

In this paper, we consider discrete-time LTI systems of the form
x(t+ 1) = Ax(t) +Bu(t) + w(t), (1)

wherex(t) ∈ X ⊆ R
n is the system state andu(t) ∈ U ⊆ R

m

is the input at timet ∈ I≥0, respectively. For the states and
inputs, we consider pointwise-in-time constraints of the form
(x(t), u(t)) ∈ Z, for all t ∈ I≥0, whereZ ⊆ X×U is a compact
set. We assume that(A,B) is stabilizable.

The unknown disturbancew(t) at timet satisfies the following
assumption.
Assumption 1.For eacht ∈ I≥0, the disturbance satisfies

w(t) ∈ W ⊂ R
n, (2)

whereW is a C-set, that is, it is a compact and convex set con-
taining the origin in its interior. Furthermore,w is distributed
overW according to some given probability density function
(PDF)ρW : Rn → [0,∞], which has bounded supportW. All
disturbances areidentical and independently distributed(i.i.d.)
and havezero mean. �

Note that due to the bounded support,ρW(w) 6= 0 only if
w ∈ W. Furthermore, we know that

∫

Rn

ρW(w)dw =

∫

W

ρW(w)dw = 1. (3)

For the inputu, we employ an affine parametrization of the
form

u(t) = Kx(t) + c(t), (4)
wherec(t) ∈ R

m is the manipulated input at timet ∈ I≥0

and K ∈ R
m×n is a state feedback, determined such that

Acl = A+BK is a stable matrix.

Thus, system (1) can equivalently be written as
x(t+ 1) = Aclx(t) +Bc(t) + w(t). (5)

ForAcl, we introduce the following assumption.
Assumption 2.The system matrixAcl is invertible. �

Remark 3.In principle, this assumption could be relaxed. How-
ever, for ease of presentation, we restrict ourselves to system
matrices which are invertible. Note that this is not a major
restriction. In fact, if(A,B) is controllable, the eigenvalues of
Acl can be placed arbitrarily inside the unit disc. Note that the
state feedbackK is later used to limit the prediction errors in
order to prevent them from growing exponentially. �

Our objective in the following is to find a feasible control input
to system (1) minimizing the asymptotic average performance

lim sup
T→∞

1

T

T−1
∑

t=0

ℓ(x(t), u(t)), (6)

whereℓ : R
n × R

m → R can be some general stage cost
function which is assumed to be continuous.

2.1 Invariant Error Set and Error Dynamics

As the real system state can not be predicted exactly due to
the disturbance, we adapt the idea of a nominal system from

the framework of tube-based MPC. Within the predictions, we
make use of the nominal state by neglecting the disturbances.
Hence the predicted nominal system is given by

z(k + 1|t) = Aclz(k|t) +Bc(k|t), z(0|t) = x(t). (7)

The notationz(k|t) andc(k|t) denotesk-step ahead predictions
of states and inputs, predicted at timet ∈ I≥0. By means of the
nominal system, we can introduce the predictions for the error

e(k|t) = x(k + t)− z(k|t) (8)

as the difference between the real and the predicted nominal
system with its associated dynamics

e(k + 1|t) = Acle(k|t) + w(k + t), e(0|t) = 0. (9)

The initial condition follows as the prediction for the nominal
system at timet is initialized at the real state, i.e.,z(0|t) = x(t).
The error at prediction timek ∈ I≥0 is contained in the setΩk,
defined recursively as

Ωk+1 = AclΩk ⊕W, (10)

with Ω0 = {0}. It is a known result in literature (see, e.g.
Rakovíc et al. (2005)) that for a stable system, this recursion
converges to the minimal robust positively invariant setΩ∞.

Definition 4.(Blanchini (1999)). The setΩ∞ ⊂ R
n is a robust

positively invariant (RPI) set for system (9) if for alle(0|t) ∈
Ω∞ and allw(k+t) ∈ W the solution is such thate(k|t) ∈ Ω∞

for all k ∈ I>0. �

The notationΩ∞ stems from the fact that the minimal RPI
(mRPI) set can – in theory – be understood asΩ∞ =
⊕∞

i=0 A
i
clW. Moreover, by definition, the mRPI set satisfies

AclΩ∞ ⊕W ⊆ Ω∞.

2.2 Error Distributions

Next, we derive the distribution of the error over the error sets
Ωk. From (9), the error dynamics are known and we can use
concepts from probability theory to find the probability density
function (PDF) of the error. It is well known (see, e.g., Ross
(2006)) that the summation of two random variablesX,Y ∈
R

n with their associated PDFsfX(ǫ) and fY (ǫ) results in a
random variable with the PDF

fX+Y (ǫ) =

∫

Rn

fX(ǫ− y)fY (y)dy =: (fX ∗ fY )(ǫ). (11)

Moreover, we additionally have to consider a linear transforma-
tion – due to the system matrixAcl – which is given by

fAclX(ǫ) =
1

|det(Acl)|
fX(A−1

cl ǫ). (12)

As discussed above, the statee(k|t) of the error system (9) is
contained in the setΩk for all k ∈ I≥0; denote its distribution
by ρΩk

(ǫ). Sincee(0|t) = 0, we haveρΩ0
= δ(ǫ). By means

of the above, the error can be interpreted as a random variable
whose PDF is given by the recursion

ρΩk+1
(ǫ) = (ρAclΩk

∗ ρW)(ǫ), (13)

for all k ∈ I≥1. With (Klenke, 2013, Theorem 1.101), we can
determine thatρAclΩk

(ǫ) = 0 if ǫ /∈ AclΩk. Using the definition
of the convolution, it follows that the support of two convolved
distributions is the Minkowski sum of the two supports. This
means that the support of the PDFρΩk

of the error at each
iteration is equivalent to the associated error set at this iteration.

Remark 5.Note that if the initial state is not known (exactly),
for example due to measurement noise, the recursion still holds
replacing the Dirac delta function by a PDF of the initial error.



However, in the following analysis, we restrict ourselves to the
assumption thatx(t) can be measured exactly at each time
step. Considering additional measurement noise is subjectto
ongoing research. �

Remark 6.In general, computing the convolutions (13) might
be a challenging task, especially for higher order dimensions.
On the other hand, this computation is performed offline and
is a standard problem where different numerical integration
schemes exist. �

3. ROBUST ECONOMIC MPC

As introduced in the previous section, we are interested in
minimizing the asymptotic average performance (6) of the
system. As usual in MPC, this is approximated by solving, at
each time step, a finite horizon optimal control problem.

Moreover, in this setup, we consider additive disturbancesto the
system. A first robust economic MPC scheme for such a setting
has recently been presented by Bayer et al. (2014). There, itwas
shown that just transferring concepts from stabilizing robust
MPC to economic MPC might not be the optimal choice with
respect to the achievable asymptotic average performance.In
Bayer et al. (2014), an average over the derived invariant error
set (for this setup overΩ∞) is taken into account by integrating
the stage cost over the mRPI set. By doing so, all possible
disturbances are considered within the optimization problem.
However, no information is given about how likely these errors
are when affecting the system with a bounded disturbance.
Hence, this method provides a useful but conservative approxi-
mation of the closed-loop behavior of (1). In order to overcome
the conservatism, it would be desirable to take the growing error
sets (10) into account within the prediction, and – if possible –
also the derived distribution over the error sets (13).

This can be achieved by considering the expected value over
the predictions of the stage cost. This leads to the following
finite horizon optimal control problem to be solved at each time
instance, which we will discuss in more detail below.

V ∗(x(t)) = min
c(t)

N−1
∑

k=0

E
t
{

ℓ(x(k + t),Kx(k + t) + c(k|t))
}

+ V int
f (z(N |t)) (14)

s.t.z(k + 1|t) = Aclz(k|t) +Bc(k|t), (15a)
z(0|t) = x(t), (15b)

(z(k|t),Kz(k|t) + c(k|t)) ∈ Zk ∀k ∈ I[0,N−1], (15c)

z(N |t) ∈ Xf , (15d)

where x(k + t) = z(k|t) +
∑k−1

j=0 A
k−j−1
cl w(j + t). The

notationEt{·} is an abbreviation for the conditional probability
E{·|x(t)}. By c

∗(t) = {c∗(0|t), . . . , c∗(N − 1|t)}, we denote
an arbitrary minimizer of the optimal control problem (14)–
(15), which we assume to exist for simplicity.

First, we concentrate on the objective (14). We need to consider
the conditional probability givenx(t) as this is the only known
term at timet, whereas all predictionsx(k + t) are subject to
disturbances for which we only know thatw(j + t) ∈ W for
all j ∈ I[0,k−1] and the distributionρW. When evaluating the
single terms, they can explicitly be written as

E
t{ℓ(x(t+ k),Kx(t+ k) + c(k|t))}

=

∫

Ωk

ℓ(z(k|t) + ǫ,K(z(k|t) + ǫ) + c(k|t))ρΩk
(ǫ)dǫ

=: ℓint
k (z(k|t), c(k|t)).

(16)

In the following analysis, we will have to consider the case
k → ∞. Therefore, we introduce the notation

ℓint
∞(z, c) := lim sup

k→∞
ℓint
k (z, c). (17)

Using (17), we can introduce therobust optimal steady-state
(ROSS)(zs, cs) satisfying

ℓint
∞(zs, cs) = inf

z=Aclz+c

(z,Kz+c)∈Z∞

ℓint
∞(z, c). (18)

We assume that the ROSS is unique. If this is not the case,
(zs, cs) denotes an arbitrary steady-state satisfying (18).
Remark 7.We conjecture that under certain assumptions on the
PDF ρW, the sequenceℓint

k converges, i.e., the limitlim
k→∞

ℓint
k

exists and (17) reduces toℓint
∞(z, c) := lim

k→∞
ℓint
k (z, c).

For the terminal cost, we introduce the following assumption,
which will in further detail be discussed in Sections 4 and 5.
Assumption 8.There exists a terminal costV int

f : Xf → R and
a terminal control lawκf(z) = Kz+cs such that for allz ∈ Xf ,
the following inequality holds:

E
{

V int
f (Aclz +Bcs +AN

cl w)|z
}

− V int
f (z) (19)

≤ −ℓint
N (z, cs) + ℓint

∞(zs, cs). �

Second, we have a closer look at the constraints (15). These
constraints are taken from the tube-based robust MPC scheme
presented in Chisci et al. (2001). The initial nominal state
is set to the measured real state (15b), which is assumed to
be known exactly. Recall that this means that the error is
reset (e(0|t) = 0) at the beginning of each iteration. As we
consider the nominal dynamics (15a), we have to tighten the
pointwise-in-time constraints taking the growing error setsΩk

into account according to (10), that is,

Zk = Z⊖ (Ωk ×KΩk). (20)
As the terminal constraint, we use

Xf = Omax ⊖ ΩN , (21)
whereOmax is the maximal output admissible set (see, e.g.,
Kolmanovsky and Gilbert (1998)). Note that this terminal re-
gion is robustly invariant with respect to the disturbanceAN

cl W

when applying the terminal controllerκf .

The proposed robust economic MPC scheme is then given as
follows:

Algorithm 1 Robust Economic MPC

given: initial statex0

for t = 0, 1, 2, . . . do
solve (14)–(15)
applyu(t) = Kx(t) + c∗(0|t) to system (1)

end for

4. ASYMPTOTIC PERFORMANCE BOUND

In this section, we investigate bounds for the asymptotic aver-
age performance (6) for the closed-loop system resulting from
the application of the robust economic MPC scheme in Algo-
rithm 1.



Theorem 9.Let Assumptions 1 and 8 be satisfied. Assume that
the optimization problem (14)–(15) is feasible at timet = 0
for a given initial conditionx0. Then Algorithm 1 is recursively
feasible and the solution of the closed-loop system

x(t+ 1) = Aclx(t) +Bc∗(0|t) + w(t) (22)

has an expected asymptotic average performance which is at
least as good as that of the robust optimal steady-state, that is

lim sup
T→∞

1

T

T−1
∑

t=0

E
0
{

ℓ(x(t),Kx(t) + c∗(0|t))
}

≤ ℓint
∞(zs, cs).

� (23)

Remark 10.The average performance boundℓint
∞(zs, cs) in (23)

can be interpreted as follows: Each trajectory starting in the
RPI setΩ∞ centered at the ROSS will stay insideΩ∞ if the
terminal controller is applied, and will, fort → ∞, be dis-
tributed overΩ∞ with distributionρΩ∞

. Hence,ℓint
∞(zs, cs) can

be interpreted as the expected average cost at the ROSS. This
corresponds to the average performance boundℓ(x∗, u∗) typi-
cally determined in nominal economic MPC, where(x∗, u∗) is
the optimal steady-state. Concerning the left hand side in (23),
the closed-loop trajectory at each time instantt is depending
on previous disturbances. Thus, the result must be related to
the (known) initial statex(0) = x0 leading to a conditional
expectation, which is a known result for example in stochastic
(stabilizing) MPC (see, e.g., Cannon et al. (2009), Lorenzen
et al. (2015)). �

Proof of Theorem 9.The proof of recursive feasibility follows
directly along the lines of the proof in Chisci et al. (2001).We
use a candidate input given byc̃(t+1) = {c∗(1|t), . . . , c∗(N−
1|t), cs}. The key steps are (i) the time-variant tightening of the
constraints (20) and (ii) the choice of the terminal setXf (21)
guaranteeing thatAclz + Bcs + AN

cl w ∈ Xf for all z ∈ Xf and
w ∈ W.

In contrast to the robust economic MPC idea in Bayer et al.
(2014), the stage cost is depending on the prediction timek.
This means we can not just apply the standard average per-
formance result as the one in Angeli et al. (2012). Here, we
again make use of the candidate solutionc̃(t + 1). Note that
due to the initial constraint (15b), the corresponding nom-
inal candidate state sequencez̃(t + 1) is not the same as
{z∗(1|t), . . . , z∗(N |t), Aclz

∗(N |t) + Bcs}. By Ṽ (x(t), c̃(t)),
we denote the suboptimal cost using the candidate solution
c̃(t+ 1). This leads to

V ∗(x(T ))−V ∗(x(0)) =

T−1
∑

t=0

V ∗(x(t+ 1))− V ∗(x(t))

≤
T−1
∑

t=0

Ṽ (x(t+ 1), c̃(t+ 1))− V ∗(x(t)).

Using the conditional probability givenx(0), it follows with the
law of iterated expectations asT is fixed that

E
0
{

V ∗(x(T ))− V ∗(x(0))
}

(24)

≤ E
0

{

T−1
∑

t=0

E

{

Ṽ (x(t+ 1), c̃(t+ 1))|x(t)
}

− V ∗(x(t))

}

,

using that all terms are bounded due to boundedness ofℓint
k on

Zk. For the right hand side of (24), we can compute for all
t ∈ I[0,T−1] for each summand

E

{

Ṽ (x(t+ 1), c̃(t+ 1))|x(t)
}

− V ∗(x(t))

=
N−1
∑

k=0

E
{

ℓint
k (z∗(k + 1|t) +Ak

clw(t), c
∗(k + 1|t))|z∗(k + 1|t)

}

+ E
{

V int
f (Aclz(N |t) +Bcs +AN

cl w(t))|z
∗(N |t)

}

−

N−1
∑

k=0

ℓint
k (z∗(k|t), c∗(k|t))− V int

f (z∗(N |t)), (25)

where we have used that the nominal candidate sequencez̃(t+
1) is given by applying̃c(t + 1) to the nominal system (7)
starting atx(t + 1) = z∗(1|t) + w(t). With the definition of
ℓint
k in (16), it follows that

E{ℓint
k (z∗(k + 1|t) +Ak

clw, c
∗(k + 1|t))|z∗(k + 1|t)}

= ℓint
k+1(z

∗(k + 1|t), c∗(k + 1|t)),

and thus, it follows from (25) that

E

{

Ṽ (x(t+ 1), c̃(t+ 1))|x(t)
}

− V ∗(x(t))

= ℓint
N (z∗(N |t), cs)−ℓ

(

x(t),Kx(t) + c∗(0|t)
)

− V int
f (z∗(N |t))

+ E
{

V int
f (Aclz(N |t) +Bcs +AN

cl w(t))|z(N |t)
}

. (26)

Using Assumption 8, (24), and (26), we can derive that

E
0
{

V ∗(x(T ))− V ∗(x(0))
}

≤ E
0

{

T−1
∑

t=0

(

ℓint
∞(zs, cs)− ℓ(x(t),Kx(t) + c∗(0|t))

)

}

(27)

By dividing both sides withT , we can see that
1

T

(

E
0{V ∗(x(T ))} − V ∗(x(0))

)

≤ ℓint
∞(zs, cs)−

1

T

T−1
∑

t=0

E
0
{

ℓ(x(t),Kx(t) + c∗(0|t))
}

,

where we have used thatE0{V ∗(x(0))} = V ∗(x(0)) as well
asE0{ℓint

∞(zs, cs)} = ℓint
∞(zs, cs). As the terms on the left hand

side are finite and by taking the limit inferior asT → ∞, it
follows that the left hand side vanishes, and thus,

lim sup
T→∞

1

T

T−1
∑

t=0

E
0
{

ℓ(x(t),Kx(t) + c∗(0|t))
}

≤ ℓint
∞(zs, cs),

which proves the average performance bound (23). �

5. QUADRATIC APPROXIMATION OF THE TERMINAL
COST

In the previous section, we have derived a statement bounding
the closed-loop asymptotic average performance. This result is
based on Assumption 8 stating a condition for the terminal cost
V int

f . One can show that by choosing the terminal cost such that

V int
f (z(N |t)) =

∞
∑

k=N

(

E
t{ℓ(x(k + t),Kx(k + t) + cs)}

−ℓint
∞(zs, cs)

)

,

(28)

condition (19) in Assumption 8 is satisfied with equality. How-
ever, finding the terminal cost satisfying (28) or another appro-
priate terminal cost in accordance to Assumption 8 might be
difficult. In order to overcome this difficulty, we briefly present
an approach to determine a quadratic approximation for the
terminal cost. Yet, we have to point out that using this quadratic
approximation will slightly deteriorate the a priori determinable



average performance bound (23), which will be shown in the
following. The idea of the concept is derived from Amrit et al.
(2011), where a quadratic terminal cost approximation is deter-
mined in the nominal case, and we use the same assumption on
the cost function.
Assumption 11.The cost functionℓ is twice continuously dif-
ferentiable. �

Due to limited space, a detailed analysis and discussion of
this approach is omitted and will be presented in a subsequent
publication.

Using the quadratic approximation idea from Amrit et al.
(2011), a terminal cost of the form

V int
f (z(N |t)) = z(N |t)TPz(N |t) + pT z(N |t) (29)

can be derived. The linear coefficient vectorp is given ac-
cording topT = qT (I − Acl)

−1, with q being the gradient
ℓz(z, κf(z)) evaluated atzs. The matrixP is the solution of
the Lyapunov equationP = AT

clPAcl + Q∗, whereQ∗ > 0
is an over-approximation for the Hessianℓzz(z, κf(z)) for all
z ∈ Xf ⊕ Ω∞. ForV int

f as defined in (29), Assumption 8 is not
necessarily satisfied, but instead the inequality

E
{

V int
f (Aclz +Bcs +AN

cl w)|z
}

− V int
f (z)

≤ −ℓint
N (z, cs) + ℓ(zs,Kzs + cs) +

1

2

∫

W

ǫTPǫρW(ǫ)dǫ.

From here, using (29), we can follow the steps of the proof of
Theorem 9, which leads to a performance bound different to the
one in (23), namely

lim sup
T→∞

1

T

T−1
∑

t=0

E
0
{

ℓ(x(t),Kx(t) + c∗(0|t))
}

≤ ℓ(zs,Kzs + cs) +
1

2

∫

W

ǫTPǫρW(ǫ)dǫ.

(30)

Having a closer look at the statements in (23) and (30), one can
show that

ℓint
∞(zs, cs) =

∫

Ω∞

ℓ(zs + ǫ,K(zs + ǫ) + cs)ρΩ∞
(ǫ)dǫ

≤ ℓ(zs,Kzs + cs) +
1

2

∫

W

ωTPωρW(ω)dω,

(31)

and furthermore, the performance bound in (30) is a quadratic
approximation of the bound in (23). Hence, using a quadratic
approximation of the terminal cost leads to a degradation ofthe
performance bound, namely to a quadratic approximation of the
performance bound (23).
Remark 12.If a quadratic stage cost function of the form
ℓ(x, u) = xTQx+uTRu with Q ≥ 0 andR > 0 is considered,
the statement in (31) is satisfied with equality, and this bound
corresponds to the result in stochastic stabilizing MPC (see,
e.g., Cannon et al. (2009), Lorenzen et al. (2015)).

6. NUMERICAL EXAMPLE

In the following, we apply the presented approach to an ex-
ample from literature, namely to the linearized model of a
continuous stirred tank reactor (CSTR) presented in Pannocchia
and Kerrigan (2005), which also has been used in the context of
robust economic MPC in Bayer et al. (2014). Those results are
compared to the ones achieved with the current approach.

The reaction taking place in the reactor is a single exothermic

irreversible first-order reaction of the formA
k
→ B. The consid-

ered states are the concentration ofA, cA, and the temperature
T in the reactor. As an input, the wall temperatureT c can
be used. The model is linearized around the state(cAs , Ts) =
(0.5mol

L , 350K) with T c
s = 300K. Using the same parameters

as in Pannocchia and Kerrigan (2005) leads to the dynamics

x(t+ 1) =

[

0.7776 −0.0045
26.6185 1.8555

]

x(t) +

[

−0.0004
0.2907

]

u(t)

+

[

−0.0002 0.0893
0.1390 1.2267

]

w(t).

For the constraints, we assumeX = {x ∈ R
2 : |x1| ≤

0.5, |x2| ≤ 5}, U = {u ∈ R : |u| ≤ 15}, and the disturbance
is uniformly distributed on the setW = {w ∈ R

2 : |w1| ≤
2, |w2| ≤ 0.1}. For the pre-stabilization, we use a feedback
K = [−0.6457,−5.4157].

For the stage cost function, we assume two objectives. The first
goal is to minimize the concentration ofA, thus, maximize
the concentration of the desired productB. Moreover, the
temperature should be kept in the intervalx2 ∈ [−2, 2] via soft
constraints (in contrast to the hard constraints|x2| ≤ 5). Thus,
the cost function is given by

ℓ(x, u) = x1 +







10x2
2 + 40x2 + 40 for x2 < −2

0 for − 2 ≤ x2 < 2

10x2
2 − 40x2 + 40 for 2 ≤ x2

.

We employ the presented algorithm withN = 20. For the
terminal cost, we use a quadratic approximation following the
idea in Section 5 withQ∗ = [ 0 0

0 5.988 ] andqT = (1, 0). This
leads toP = [ 18067.43 61.52

61.52 6.50 ] andpT = (4.5455, 0).

We can compute the ROSS to bezs = (−0.0239, 1.3339)T

with the associated inputcs = 5.4679. Computing the bounds
on the asymptotic average performance, we can see that
ℓint
∞(zs, cs) = −0.024301, whereas for the quadratic approxi-

mation, we receiveℓ(zs,Kzs + cs) +
1
2

∫

W
ǫTPǫρW(ǫ)dǫ =

0.336991. We can see that the difference between the two
bounds is quite large for this example, which is caused by
the rather large terminal region and the inevitable symmetry
of the terminal cost. Due to the quadratic approximation of
the terminal cost, the predictable a priori asymptotic average
performance bound (30) is quite conservative, as shown in the
following.

We now compare the closed-loop performance of this approach
to the results derived for previous concepts of robust economic
MPC. In the first approach, the disturbance is not consideredin
the stage cost, leading to

ℓ(i)(z, c) = ℓ(z,Kz + c).

This is an approach resembling the standard idea in tube-
based robust MPC. The second approach, presented in Bayer
et al. (2014), considers the influence of the disturbance on the
performance by using the modified stage cost

ℓ(ii)(z, c) =

∫

{z}⊕Ω∞

ℓ(x,Kx+ c)dx.

In this approach, as already discussed in the introduction and
in Section 3, no distribution of the error is assumed to be
known, but an average ofℓ over Ω∞ is used as a stage cost.
Using these two approaches, we can compute their associated
optimal steady states atz(i)s = (−0.0358, 2.0009)T andz(ii)s =
(−0.0076, 0.4275)T , respectively.
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Fig. 1. Contour plot of the stage cost function. The sets repre-
sent{zs}⊕Ω∞ (blue),{z(i)s }⊕Ω∞ (red), and{z(ii)s }⊕Ω∞

(green), respectively. The black line represents all feasible
nominal steady-states, the white crosses are one closed-
loop sequence of real states determined with Algorithm 1
(for 200 iterations).

Considering the asymptotic average performance for the closed-
loop system, we receive (averaged over 20 simulations):

Presented reMPC Standard MPC(ℓ(i)) reMPC(ℓ(ii))
–0.0298 + 0.3410 –0.0076

We can see that taking the additional stochastic information
into account within the economic MPC scheme significantly
improves the average performance. Even though the previously
presented approach based onℓ(ii) outperforms the standard
MPC approach based onℓ(i), considering stochastic informa-
tion provides the best asymptotic average performance.

When comparing the steady-state behavior in Figure 1, we
can see that for the MPC approach based onℓ(i) (red), the
disturbances might push the system into “expensive” areas.
This is the case because no disturbance is considered within
the stage cost. The robust economic MPC based onℓ(ii) (green)
keeps the system for all possible disturbances within the desired
temperature range. In contrast to these, our newly presented
approach takes into consideration that errors at the edge ofthe
mRPI set are unlikely to occur. Thus, the optimal steady-state
is closer to the edge of the desired temperature range (blue).
Comparing the closed loop, one can see that while for the two
other approaches the nominal system is best kept at the optimal
steady-state (see Bayer et al. (2014) for a detailed discussion),
in the presented approach the nominal system starts at the
states of the real system (due to (15b)) (white crosses). Thus,
the closed-loop can – depending on the disturbances - even
be driven closer to the edge of the desired temperature range,
and hence, the average performance is improved. Moreover, the
achieved asymptotic average performance is far better thanthe
determined (conservative) performance bound.

7. CONCLUSION

A new approach for robust economic MPC was presented tak-
ing stochastic information into account in order to improvethe
closed-loop performance. The key idea is to explicitly calculate
the expected value cost of the open-loop predictions within
the optimization problem. We were able to provide bounds on
the closed-loop average performance which are based on an
appropriate terminal cost. As finding such an appropriate termi-

nal cost can be difficult, we briefly presented an approach for
determining a quadratic approximation. However, as also seen
in the example, this might deteriorate the a priori determinable
performance bound.

Further possibilities for finding a less conservative approxima-
tion for the terminal cost are currently investigated. In addition,
probabilistic constraints could be considered in this framework.
Finally, further research is needed on how the performance is
influenced by the chosen feedback used in the predictions.
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