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Abstract: In this paper, we develop a new tube-based robust economiC Bttheme for linear
systems subject to bounded disturbances with given disimitss. By using the error distribution in the
predictions of the finite horizon optimal control probleme wan incorporate stochastic information in
order to improve the expected performance while being abfgiarantee strict feasibility. For this new
framework, we can provide bounds on the asymptotic averagenmance of the closed-loop system.
Moreover, a constructive approach is sketched in order tbdim appropriate quadratic terminal cost
accepting a slight degradation of the average performaatensent.
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1. INTRODUCTION straint satisfaction. In order to consider the influencéhefdis-
turbances on the performance, the cost function is modifyed b

In the last decadesconomicModel Predictive Control (MPC) averaging the cost over all possible states within someiamva
has received significant attention. While stabilizing MP@sus set. Since no further assumption on the disturbances issetho
a positive definite stage cost function to stabilize a givea s other than boundedness, this averaging is done by weigalling
point, the main focus of economic MPC is the optimization ostates in the invariant set equally.
some general performance criterion, which possibly resesnb
the economics of the considered system. To this end, differ
settings and methods have been proposed in the literatese (

In this paper, we show how additional stochastic infornmratin

Sphe disturbance, if available, can be used to improve cksepol

. ; X erformance in robust economic MPC. To this end, we consider

;\a/lg"é?ne%i‘l; e(tz%l'lgz)?lz)’ Diehl etal. (2011), Amritet &001), a rob}Jst MPC framework. to guarantee rok_)ust con_st.ra!nt sat-
' ' isfaction, and employ additional stochastic informatioithva

In many practical applications, systems are affected biyidis the cost function to improve the performance. To this end, we

bances which can result in a degradation of performance@andtompute the exact prediction of the error set at each open-

a loss of feasibility. Therefore, different concepts haeer loop time step and use the robust MPC approach presented in

presented in the framework of MPC in order to deal with disChisci et al. (2001) to guarantee robust feasibility. Moo

turbances. In robust MPC, bounded disturbances are tat@n isve compute the distribution of the error over these sets us-

consideration while aiming at the robust satisfaction afdha ing the given distribution of the disturbance, and empladg th

constraints (see, e.g., Chisci et al. (2001), Mayne et @0%p. information within the finite horizon optimal control praish

In stochastic MPC, disturbances of stochastic naturewith by taking the expected value of the cost. We show that for

a given distribution, are considered. This stochasticrinfe @ particular assumption on the terminal cost, bounds on the

tion can be used in order to improve performance. Moreovelverage performance of the closed loop can be derived which

probabilistic constraints are typically considered iastef hard resemble known results from both nominal economic MPC

constraints (see, e.g., de laffeet al. (2005), Cannon et al. and previous concepts on robust economic MPC. Moreover,

(2009), Primbs and Sung (2009), Chatterjee et al. (2011)). Wwe derive a constructive approach for finding an appropriate

L . . . quadratic terminal cost (which leads to a slight degradatid
When considering economic stage cost functions for disturbey,o original average performance statement).

systems, only few results can be found. In Huang et al. (2012

a stability result for robust economic MPC is presented whicThe remainder of this paper is structured as follows. In Sec-
is based on a robust tracking of an a priori determined optim#éon 2, we introduce the problem setup. The finite horizon op-
nominal trajectory. Broomhead et al. (2014) aim at staibigjz timal control problem is presented and discussed in Se@tion
an economically optimal steady-state despite disturmaniae A bound on the closed-loop asymptotic average performance i
cia et al. (2014) study a scenario based approach for ecanorderived in Section 4, and in Section 5, we provide a constreict
MPC in order to, among others, find guarantees for feasibilitapproach for finding an appropriate quadratic terminal. ddst
Another approach is presented in Bayer et al. (2014), wheresatup is applied to a numerical example from process ingustr
robust MPC framework is employed to guarantee robust coi* Section 6, and the paper is concluded in Section 7.
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Technology (EXC 310/2) at the University of Stuttgart.




For setsX, Y C R”, the Minkowski set addition is defined by the framework of tube-based MPC. Within the predictions, we
XY ={z+yeR":z € X,y € Y} the Pontryagin make use of the nominal state by neglecting the disturbances

set difference is defined a¥ 6 Y := {# € R"” : z 4+ Hence the predicted nominal system is given by
yeX,VyeYh 2(k + 1)) = Agz(k|t) + Be(k|t), z(0]t) = z(t). (7)
2 PROBLEM SETUP The notatior:(k|t) ande(k|t) denotesi-step ahead predictions

of states and inputs, predicted at titne I>,. By means of the
nominal system, we can introduce the predictions for thererr

e(klt) = x(k +t) — z(k|t) (8)
as the difference between the real and the predicted nominal
system with its associated dynamics

In this paper, we consider discrete-time LTI systems of ¢enf
x(t+ 1) = Az(t) + Bu(t) + w(t), 1)

wherez(t) € X C R” is the system state andt) € U C R™

is the input at timet € I, respectively. For the states and

inputs, we consider pointwise-in-time constraints of therf e(k +1Jt) = Age(k|t) + w(k +t), e(0]t) =0.  (9)
(z(t),u(t)) € Z,forallt € 1o, whereZ C XxUis acompact The initial condition follows as the prediction for the noral
set. We assume thatl, B) is stabilizable. system at time is initialized at the real state, i.e/(0|t) = z(t).

The unknown disturbance(t) at timet satisfies the following The error at prediction timé ¢ I is contained in the séty,

assumption. defined recursively as

Assumption 1For eacht € I, the disturbance satisfies Q1= A W, (10)
w(t) € W c R" ) with Qy = {0}. It is a known result in literature (see, e.g.
’ Rakovic et al. (2005)) that for a stable system, this recursion

whereW is a C-set, that is, it is a compact and convex set Col,yerges to the minimal robust positively invariant@et.

taining the origin in its interior. Furthermore; is distributed . o L
over W according to some given probability density functionP€finition 4.(Blanchini (1999)). The se., C R™ is a robust
(PDF) pw : R — [0, 00], which has bounded suppdit. Al Positively invariant (RPI) set for system (9) if for al{0]¢) <

disturbances arielentical and independently distributédi.d.) ~ {lc andallw(k+1) € W the solution is such thatk|t) Qo.o

and havezero mean m forallkel,
Note that due to the bounded suppgry(w) # 0 only if The notationQ2, stems from the fact that the minimal RPI
w € W. Furthermore, we know that (mRPI) set can — in theory — be understood Qg =
D2, ALW. Moreover, by definition, the mRPI set satisfies
/ pw(w)dw = / pw(w)dw = 1. 3) AuQe®W C Q.
W

For the inputu, we employ an affine parametrization of the2.2 Error Distributions
form

u(t) = Kz(t) + ¢(t), (4) Next, we derive the distribution of the error over the erretss
wherec(t) € R™ is the manipulated input at time € I, - From (9), the error dynamics are known and we can use
and K € R™*" is a state feedback, determined such thatoncepts from probability theory to find the probability dity

Ay = A + BK is a stable matrix. function (PDF) of the error. It is well known (see, e.g., Ross
) ) (2006)) that the summation of two random variabkesY <
Thus, system (1) can equivalently be written as R" with their associated PDFgx (¢) and fy (¢) results in a
z(t+1) = Agz(t) + Be(t) + w(t). (5) random variable with the PDF
For Ag, we introduce the following assumption. fxsv(e)= | fx(e—=y)fy(y)dy =: (fx * fy)(e). (11)

Assumption 2.The system matrixl is invertible. [ | R® _ _

Remark 3.In principle, this assumption could be relaxed. HowMoreover, we additionally have to consider a linear tramsfo
ever, for ease of presentation, we restrict ourselves tesys (10N — due to the system matrit, —which is given by

matrices which are invertible. Note that this is not a major Faox(e) = 1 Fx(AZ'e) (12)
restriction. In fact, if( A, B) is controllable, the eigenvalues of AaX |det(Ag)|” ¥

A ca;n bgbplakc(eq ?rbltrarllydmsuii.e ;hehunlt d(IjS.C.. Note that thgg giscussed above, the staig|t) of the error system (9) is
st:éte eedbac 'ﬁ ate}r used to limit the pre _|cﬁt|on EITOrs IN contained in the sk, for all k € Iso; denote its distribution

order to prevent them from growing exponentially. | by pa, (€). Sincee(0[t) = 0, we havepg, = d(e). By means

of the above, the error can be interpreted as a random variabl

Our objective in the following is to find a feasible contropirt whose PDF is given by the recursion

to system (1) minimizing the asymptotic average perforreanc

1 T-1 PQet1 (6) = (pAcIQk * pW)(6)> (13)
lim sup — Z L(x(t),u(t)), (6) forall k € I>;. With (Klenke, 2013, Theorem 1.101), we can
T—oo T {5 determine thap a0, (€) = 0if € ¢ AqQ. Using the definition
where/ : R” x R™ — R can be some general stage cos@f the convolution, it follows that the support of two cornved
function which is assumed to be continuous. distributions is the Minkowski sum of the two supports. This
means that the support of the PDDg, of the error at each
2.1 Invariant Error Set and Error Dynamics iteration is equivalent to the associated error set attiiation.

Remark 5.Note that if the initial state is not known (exactly),
As the real system state can not be predicted exactly due ftr example due to measurement noise, the recursion skilsho
the disturbance, we adapt the idea of a nominal system fromplacing the Dirac delta function by a PDF of the initialcerr



However, in the following analysis, we restrict ourselveste E{0(z(t + k), Kz(t + k) + c(k[t))}
assumption that:(¢) can be measured exactly at each time
step. Considering additional measurement noise is sutject = /E(Z(k‘\t) + €, K(2(k|t) + €) + c(k[t)) pa, (e)de  (16)
ongoing research. [} S
. : . = Oz (K|t), c(klt)).
Remark 6.In general, computing the convolutions (13) might
be a challenging task, especially for higher order dimersio | the following analysis, we will have to consider the case
On the other hand, this computation is performed offline and _, , Therefore, we introduce the notation
is a standard problem where different numerical integratio 8‘“‘(2 ¢) = limsu E"“(z o) (17)
schemes exist. [ | o0l #: €) 1= L SUD £ (2, €)-
Using (17), we can introduce thebust optimal steady-state
(ROSS)(zs, cs) satisfying
3. ROBUST ECONOMIC MPC M (24, c6) = quanr Mz, c). (18)
z=Aclz+C
. . . . . . (2, Kz+4¢) €L oo
As introduced in the previous section, we are interested e assume that the ROSS is unique. If this is not the case,
m'”'m'Z”E the als_ym'vrlJlgoCtlc r?ve_rage performagncbe (6)| of the, . ) denotes an arbitrary steady-state satisfying (18).
system. As usual in , this is approximated by solving, : : :

. - , j emark 7.We conjecture that under certain assumptions on the
each time step, a finite horizon optimal control problem. PDF pw, the sequencél converges, i.e., the Iimilglim gt
Moreover, in this setup, we consider additive disturbanc#se . ot e int oo
system. A first robust economic MPC scheme for such a settineg)]('StS and (17) reduces & (z, ¢) := klinioe’“ (z,0).
has recently been presented by Bayer et al. (2014). Thevasit . . . ,
shown that just transferring concepts from stabilizingustb FOr the terminal cost, we introduce the following assunptio
MPC to economic MPC might not be the optimal choice witivhich WI|.| in further det_a|l be dlscu_ssed in Sections 4 and 5.
respect to the achievable asymptotic average performamce Assumption 8 There exists a terminal cosf™ : Xy — R and
Bayer et al. (2014), an average over the derived invariaot er a terminal control law:s(z) = K z+ ¢, such that for alk € X;,
set (for this setup ovel,.) is taken into account by integrating the following inequality holds:

the stage cost over the mRPI set. By doing so, all possible E{Vi"(Ayz + Be. + AN _yintg, 19
disturbances are considered within the optimization bl v (imdz o int a w)lz} = V() (19)
However, no information is given about how likely these esro < =l (2, ¢5) + £ (25, ¢s). u

are when affecting the system with a bounded d'Sturban°§econd, we have a closer look at the constraints (15). These

2228% (g?lt?\g]gg]s%d dﬂg%\”dtf:hz\?iz?g‘l al;t fnogfgé\r/?g\g?/g&%m constraints are taken from the tube-based robust MPC scheme
b ' presented in Chisci et al. (2001). The initial nominal state

the conservatism, it would be desirable to take the grominge 5 oot 1 the measured real state (15b), which is assumed to

zfsts ,Erllg) dlg;[i(\)/ :.(;:((:j?:t?itb\lljv':itgrl]n()t\?eerFt)fl;eedécrlt’lc?rns,ggd(l_:%;f poles be known exactly. Recall that 'this means'that'the error is
' reset €(0|t) = 0) at the beginning of each iteration. As we

This can be achieved by considering the expected value ovegnsider the nominal dynamics (15a), we have to tighten the

the predictions of the stage cost. This leads to the follgwinpointwise-in-time constraints taking the growing errotsse,

finite horizon optimal control problem to be solved at eanteti into account according to (10), that is,

instance, which we will discuss in more detail below. Zi =70 (Q x KQ). (20)
N-1 As the terminal constraint, we use
V*(x(t) = min D Bk + 1), Ka(k + 1) + c(k|t) } Xt = Omax © On, (21)
k=0 int where O,,.x IS the maximal output admissible set (see, e.g.,
+ Vi (2(N]t)) (14)  Kolmanovsky and Gilbert (1998)). Note that this terminal re
gion is robustly invariant with respect to the disturbarggw
s.t.z(k + 1|t) = Aaz(k|t) + Be(k|t), (15a) when applying the terminal controlle.
2(0[t) = =(t), - (15b)  The proposed robust economic MPC scheme is then given as
(z(klt), Kz(k[t) + c(kl|t)) € Zy Yk € Tjg n—1j, (15c) follows:
z(N|t) € Xy, (15d) Algorithm 1 Robust Economic MPC
1 i . given: initial statex
where z(k + t) = 2(klt) + >.5— Ay "'w(j + t). The for t — 071727“0. 4o
notationE!{-} is an abbreviation for the conditional probability solve (14)—(15)
E{-|z(¢t)}. By ¢*(t) = {c*(0]¢),...,c*(N — 1|¢t)}, we denote applyu(t) = Kxz(t) + ¢*(0|t) to system (1)

an arbitrary minimizer of the optimal control problem (14)—- end for
(15), which we assume to exist for simplicity.

First, we concentrate on the objective (14). We need to densi 4. ASYMPTOTIC PERFORMANCE BOUND

the conditional probability givem(t) as this is the only known

term at timet, whereas all predictions(k + ¢) are subject to In this section, we investigate bounds for the asymptotar-av
disturbances for which we only know that(j +¢) € W for age performance (6) for the closed-loop system resultioi fr
all j € I}y x—1) and the distributiorpy,. When evaluating the the application of the robust economic MPC scheme in Algo-
single terms, they can explicitly be written as rithm 1.




Theorem 9.Let Assumptions 1 and 8 be satisfied. Assume that v - o

the optimization problem (14)—(15) is feasible at time= 0 E {V(m(t +1) e+ 1))‘x(t)} V()

for a given initial conditionzy. Then Algorithm 1 is recursively ~ N-1 ‘

feasible and the solution of the closed-loop system = Z E{6(z*(k + 1[t) + Afw(t), c* (k + 1[t)|" (k + 1[t)}
x(t+1) = Agz(t) + Be*(0]t) + w(t) (22) k=0

E {Vi"™(Aqz(N|t) + Bes + A w(t))|2* (Nt
has an expected asymptotic average performance which is at { 1 (Aaiz(NJt) + Bes + Agw(t))]2"(N] )}

least as good as that of the robust optimal steady-statastha i N " int, %
9 P Y = 3T (R ¢ (k) — VI (V). (25)
k=0

T-1
: . 1 0 * int
h;njo‘ip T > EN{e@(t), Ka(t) + ¢ (011)} < £5(z:¢)-  \where we have used that the nominal candidate sequdee
=0 1) is given by applyinge(t + 1) to the nominal system (7)
u (23)  starting ate(t + 1) = 2*(1]¢) + w(t). With the definition of
Remark 10.The average performance bouffi(z,, ¢,) in (23) " in (16), it follows that
can be interpreted as follows: Each trajectory startinghin t {0 (2" (k 4 1]t) + ARw, ¢ (k + 1[t))]2* (k + 1]t)}
RPI set(), centered at the ROSS will stay insi€le,, if the A e 118). ¢ 112
terminal controller is applied, and will, far — oo, be dis- - kfl(z (k +1[t), ¢ (k + 1]t)),
tributed over, with distributionpq,__. Hence /M (z,, ¢,) can ~ and thus, it follows from (25) that
be interpreted as the expected average cost at the ROSS. This [ ~ 1
corresponds to the average performance bdifnd, «*) typi- E{V(x(t +1)e(t + 1))|x(t)} V() .
cally determined in nominal economic MPC, whése, u*) is = (0 (2*(N|t), cs) —€(x(t), Ka(t) + c*(0]t)) — V™ (2" (N ]t))
the optimal steady-state. Concerning the left hand sid23j, ( int N
the closed-loop trajectory at each time instans depending 1 © {Vi"(Aaz(N]t) + Bes + Agw(®)[2(N[t)} . (26)
on previous gh_st_urbances. Thus, the re_sult must be _r_elated Gsing Assumption 8, (24), and (26), we can derive that
the (known) initial stater(0) = x leading to a conditional O« re .
expectation, which is a known result for example in stodhast E {V (x(T) -V (a:(O))}

(stabilizing) MPC (see, e.g., Cannon et al. (2009), Lorenze -1 (27)
et al. (2015)). B <E°Q) (00(zc0) — L(z(t), Ka(t) + c*(0]1)))
t=0
Proof of Theorem 9.The proof of recursive feasibility follows By dividing both sides with", we can see that
directly along the lines of the proof in Chisci et al. (2000Je 1
use a candidate input given byt +1) = {c*(1]t),...,c*(N — — (EY{V*(z(D))} — V*(2(0)))
1]t), cs }. The key steps are (i) the time-variant tightening of the T _—
constraints (20) and (ii) the choice of the terminal Eet(21) int 1 0 *
guaranteeing thallqz + Bcg + Aé\(w € X; for all z € Xf and < loo(2s, ) T ; E {E(x(t)’KI(t) te (O‘t))}’
w e W. -

where we have used thBf {V*(z(0))} = V*(z(0)) as well
In contrast to the robust economic MPC idea in Bayer et ahsE{/"(z,, c,)} = M (2,, c,). As the terms on the left hand
(2014), the stage cost is depending on the prediction time side are finite and by taking the limit inferior & — oo, it
This means we can not just apply the standard average pfitows that the left hand side vanishes, and thus,
formance result as the one in Angeli et al. (2012). Here, we T_1
again make use of the candidate solutigin + 1). Note that  ;,, Supl Z EO{e(x(t), Kx(t) +c*(0[t) } < 6T (2, c5)
due to the initial constraint (15b), the corresponding nom- 700 7' % ' oo

inal candidate state sequengg¢t + 1) is not the same as | 1., proves the average performance bound (23). 0
{z*(1|t), ..., 2*(N|t), Agz*(N|t) + Bcs}. By V(z(t), e(t)),

we denote the suboptimal cost using the candidate solutiog QUADRATIC APPROXIMATION OF THE TERMINAL

¢(t +1). This leads to COST
T-1
V*(x(T))—V*(x(0)) = Z Vi(x(@t+1)) = V*(x(t)) In the previous section, we have derived a statement bogndin
t=0 the closed-loop asymptotic average performance. Thidtrissu
T-1 based on Assumption 8 stating a condition for the terminsi co
< Z V(z(t+1),et+1)) — V*(x(t)). V{". One can show that by choosing the terminal cost such that
t=0 0
Using the conditional probability given(0), itfollows with the ~ Vi" (2(N[8)) =y (E*{l(x(k + ), Kx(k + ) + c5)} (28)
law of iterated expectations dsis fixed that k=N )
* * *gm sy Cs 5
EO{V* (2(T) = V* (2(0))} (24) (251 5))

T_1 condition (19) in Assumption 8 is satisfied with equality.#o
< RO EdV (et +1). et +1 AV vt ever, flndmg the termlnal cost satisfying (28) or ginothq)’(ap
- {Z {V(x( +1), &t + D)l )} Vi (a( ))}’ priate terminal cost in accordance to Assumption 8 might be
t=0 . . .o .
. , difficult. In order to overcome this difficulty, we briefly gent
using that all terms are bounded due to boundedneé8' @in  an approach to determine a quadratic approximation for the
Zy. For the right hand side of (24), we can compute for allerminal cost. Yet, we have to point out that using this gatdr
t € Ijo,7—1) for each summand approximation will slightly deteriorate the a priori deténable



average performance bound (23), which will be shown in thered states are the concentrationdofe”, and the temperature
following. The idea of the concept is derived from Amrit et al 7 in the reactor. As an input, the wall temperatufé can
(2011), where a quadratic terminal cost approximationierde pe used. The model is linearized around the stafe T,) =
mined in the nominal case, and we use the same assumption(g_rsmTol7 350 K) with T¢ = 300K. Using the same parameters

the cost function. - _ ~asin Pannocchia and Kerrigan (2005) leads to the dynamics
,f:srztri?apg:gn 11The cost functior? is twice continuously (21‘- s(t+1) = 07776 —0.0045 o(6) 4 —0.0004 ot
: 26.6185 1.8555 0.2907
Due to limited space, a detailed analysis and discussion of —0.0002 0.0893
this approach is omitted and will be presented in a subsgquen 0.1390 1.2267 w(t).
publication.
Using the quadratic approximation idea from Amrit et alFor the constraints, we assurie = {z € R? : || <
(2011), a terminal cost of the form 0.5, |z2| <5}, U= {u € R : |u| < 15}, and the disturbance

_ : ; o )
it (N1 = 2(NI1OT Po(NE T (NIt og) Is uniformly distributed on the s&tV = {w € R* : |uy| <
Yi (Z(. 1) Z(. [£)" Pa( .‘ .)+p 2 | ) . (29) 2, lwg| < 0.1}. For the pre-stabilization, we use a feedback
can be derived. The linear coefficient vecioris given ac- ' [-0.6457, —5.4157).

cording top” = ¢”"(I — Ag)~!, with ¢ being the gradient

0,(z, ki(2)) evaluated at,. The matrix P is the solution of For the stage cost function, we assume two objectives. Tste fir
the Lyapunov equatio® = AL PAq + Q*, where@* > 0 goal is to minimize the concentration of, thus, maximize
is an over-approximation for the Hessién (z, x¢(2)) for all ~ the concentration of the desired produBt Moreover, the

2 € Xt @ Qo For Vfint as defined in (29), Assumption 8 is nottemperz_iture_should be kept in the intervale [—2, 2] via soft
necessarily satisfied, but instead the inequality constraints (in contrast to the hard constrajatg < 5). Thus,

]E{Vfim(Aclz + Be, + Aé‘(w)\z} —ViM(2) the cost function is given by

- 1 [ 1023 + 4025 +40 for zp < —2
< —EN(z,cS)+€(zS7Kzs+cs)+§/We Pepw(e)de. Uz, u) = a1+ 40 for —2< 2y <2.
From here, using (29), we can follow the steps of the proof of 1023 — 4022 + 40 for2 <z,
Theorem 9, which leads to a performance bound differento thye employ the presented algorithm wifi = 20. For the
one in (23), namely terminal cost, we use a quadratic approximation following t
T-1 i i i i * _ [0 _ O T _ i
. 1 o . idea in Section 5 witlQ* = [{ ; §s5] andg’ = (1,0). This
limsup 7 ; E*{£(x(t), K (t) + ¢*(0]t)) } 0 leads toP = [ 1805743 6152] andp? = (4.5455,0).
1 . We can compute the ROSS to bg = (—0.0239,1.3339)7
< U(zs, Kzs +c5) + 5/ € Pepy(e)de. with the associated input, = 5.4679. Computing the bounds
w on the asymptotic average performance, we can see that
Having a closer look at the statements in (23) and (30), one céX (25, cs) = —0.024301, whereas for the quadratic approxi-
show that mation, we receive(z,, Kz, + ¢;) + 5 [ €' Pepw(e)de =
Jint N ¢ K q 0.336991. We can see that the difference between the two
oo (25, 5) = (25 + € K (25 +€) +¢s)pa (e)de bounds is quite large for this example, which is caused by
1 (31) the rather large terminal region and the inevitable symynetr
< U(zs,Kzs+c5) + —/ w! Pwpyy (w)dw, of the terminal cost. Due to the quadratic approximation of
2 Jw the terminal cost, the predictable a priori asymptotic ager

and furthermore, the performance bound in (30) is a quadratherformance bound (30) is quite conservative, as shownein th
approximation of the bound in (23). Hence, using a quadrat{g|lowing.

approximation of the terminal cost leads to a degradatidhef ]
performance bound, namely to a quadratic approximatioheof t We now compare the closed-loop performance of this approach
performance bound (23). to the results derived for previous concepts of robust eenno

MPC. In the first approach, the disturbance is not considiared

Remark 12.I1f a quadratic stage cost function of the form,[he stage cost, leading to

U(z,u) = 27 Qz+u’ Ruwith @ > 0andR > 0is considered, 4
the statement in (31) is satisfied with equality, and thisrizbu (D (z,¢) = (2, Kz +¢).
corresponds to the result in stochastic stabilizing MP@,(se.I.hiS is an approach resembling the standard idea in tube-

e.g., Cannon et al. (2009), Lorenzen et al. (2015)). based robust MPC. The second approach, presented in Bayer
6. NUMERICAL EXAMPLE et al. (2014), consi_ders the infl_u_ence of the disturbancéhen t
performance by using the modified stage cost

In the following, we apply the presented approach to an ex- ii

ample from literature, namely to the linearized model of a (9 (z,¢) = /{z}@ﬂ Uz, Kz + c)de.
continuous stirred tank reactor (CSTR) presented in Partniac -
and Kerrigan (2005), which also has been used in the context
robust economic MPC in Bayer et al. (2014). Those results até
compared to the ones achieved with the current approach. X"

I§ this approach, as already discussed in the introductioh a

in, Section 3, no distribution of the error is assumed to be
own, but an average df over (), is used as a stage cost.
Using these two approaches, we can compute their associated
The reaction taking place in the reactor is a single exothermoptima| steady states a&i) = (—0.0358, 2.0009)T andzg“) _

irreversible first-order reaction of the form 5 B. The consid- (—0.0076,0.4275)T, respectively.



nal cost can be difficult, we briefly presented an approach for
determining a quadratic approximation. However, as also se
in the example, this might deteriorate the a priori deteahia
performance bound.

Further possibilities for finding a less conservative agjma-

| tion for the terminal cost are currently investigated. Iditidn,
probabilistic constraints could be considered in this feamork.
Finally, further research is needed on how the performasce i
influenced by the chosen feedback used in the predictions.
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