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Abstract

We propose a novel model predictive control (MPC) formulation, that ensures recursive feasibility, stability and performance
under inexact dual optimization. Dual optimization algorithms offer a scalable solution and can thus be applied to large
distributed systems. Due to constraints on communication or limited computational power, most real-time applications of MPC
have to deal with inexact minimization. We propose a modified optimization problem inspired by robust MPC which offers
theoretical guarantees despite inexact dual minimization. The approach is not tied to any particular optimization algorithm,
but assumes that the feasible optimization problem can be solved with a bounded suboptimality and constraint violation.
In combination with a distributed dual gradient method, we obtain a priori upper bounds on the number of required online
iterations. The design and practicality of this method are demonstrated with a benchmark numerical example.

1 Introduction

Model predictive control (MPC) is a well-established
control method, that can be used to control complex
dynamical systems and guarantee constraint satisfac-
tion [34]. One of the main limitations to control a sys-
tem with MPC comes from computational issues, since
in each time step an optimization problem has to be
solved. In order to apply MPC to large-scale systems,
we have to consider distributed approaches, which fall
in the domain of distributed MPC (DMPC) [27,28]. If
we want to facilitate DMPC applications to fast (phys-
ically) interconnected networks, we typically need scal-
able distributed optimization algorithms with bounds
on the number of required iterations.

Dual optimization algorithms such as the alternating di-
rection method of multipliers (ADMM), dual gradient
methods and proximal decomposition have been studied
to solve DMPC optimization problems online [17,31,30].
While these algorithms enable a fully distributed im-
plementation and asymptotically converge to the opti-
mal central solution, real-time requirements lead to early
termination and an inexact solution. Contrary to pri-
mal decomposition methods [37], these inexact solutions
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based on dual optimization do not necessarily satisfy the
posed constraints (dynamic, state and input constraints)
in the MPC optimization problem. This necessitates ad-
ditional modifications to ensure recursive feasibility and
stability of the resulting MPC scheme.

Related work

In [9] DMPC without terminal constraints is investi-
gated and a sufficient stopping condition for the dis-
tributed iteration based on a candidate solution is pre-
sented. For this approach no prior bound on the number
of required iterations can be given.

In [19] a primal optimization algorithm with constraint
violations in the dynamic equality constraints is investi-
gated. Recursive feasibility is ensured with an appropri-
ate state and input constraint tightening.

In [35,29] constraint violations in the inequality con-
straints due to inexact dual optimization are addressed
with an appropriate (constant or adaptive) constraint
tightening. Constraint violations in the posed dynamic
equality constraints are avoided by using a condensed
formulation [29] or projecting the intermediate solution
to the set of dynamically feasible trajectories [35]. Both
approaches are, however, unsuited for distributed large-
scale systems.

In [7] constraint violations in inequality constraints and
dynamic equality constraints are considered by using
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an appropriate constraint tightening. Recursive feasibil-
ity is ensured by choosing the tolerance and thus the
constraint tightening adaptively. As a consequence, the
number of iterations can vary and global communication
is required to enable this adaptation. In [6] a similar con-
straint tightening is used for a distributed hierarchical
MPC scheme.

Contribution

We propose a new framework to ensure recursive feasibil-
ity of inexact DMPC resulting from finite dual iterations.
This consists of a constant constraint tightening and a
stabilizing controller, motivated by robust MPC [2]. To
avoid an overly conservative constraint tightening, we
propose a modified optimization problem and employ
a different candidate solution, that explicitly takes the
inexactness into account. This presents a general pro-
cedure which is applicable to different MPC setups. By
combining this framework with a dual distributed gra-
dient algorithm, we obtain an a priori upper bound for
the number of dual iterations to ensure recursive feasibil-
ity. Compared to [29,7,9], no adaptive constraint tight-
ening is required. Furthermore, compared to [19,35,7,6],
no centralized operations are necessary, thus allowing a
fully distributed implementation for large-scale systems.

Outline

The remainder of this paper is structured as follows: Sec-
tion 2 presents the nominal distributed MPC formula-
tion and explains the problem inherent in inexact dual
optimization. Section 3 presents the modified formula-
tion, derives closed-loop properties under inexact mini-
mization and presents a corresponding distributed dual
iteration scheme. Section 4 illustrates the practicality
and simplicity of the proposed framework with a numer-
ical example. Section 5 concludes the paper.

In the appendix, these results are extended to MPC
without terminal ingredients, unreachable setpoints,
multi-step MPC and the distributed offline computation
of the terminal ingredients is detailed.

The main content (without appendix) is accepted to be
published in Automatica as a brief paper .

2 Distributed Model Predictive Control

Notation

The real numbers are R, the positive real numbers are
R>0 = {r ∈ R|r > 0} and the natural numbers are N.
Given vectors ai ∈ Rni , we abbreviate the column vector
[a>1 , . . . , a

>
n ]> = (a1, . . . , an). The quadratic norm with

respect to a positive definite matrix Q = Q> is denoted

by ‖x‖2Q = x>Qx and the minimal and maximal eigen-

value of Q are denoted by λmin(Q) and λmax(Q), respec-
tively. For a polytopic constraint Ay ≤ b, we define an ε-
feasible solution as any vector y that satisfiesAy ≤ b+ε1,
with ε ∈ R>0 and the vector of ones 1 = [1, . . . , 1]>. We
call a vector ε-strictly feasible if it satisfies Ay ≤ b− ε1.
The Minkowski sum of two sets S, T ⊂ Rn is denoted by

S ⊕ T = {x|∃s ∈ S, t ∈ T : x = s+ t}.

A distributed system is represented as a graph G =
(N , E) with nodes N and edges E . Each node i ∈ N cor-
responds to a subsystem with local state xi ∈ Rni and
local input ui ∈ Rmi . The neighborhood of a subsystem
i is given by Ni = {j|(i, j) ∈ E}∪ {i}, with xNi ∈ RnNi ,
nNi =

∑
j∈Ni nj .

2.1 Problem setup

The distributed linear discrete-time 1 system is given by

xi(t+ 1) = ANixNi(t) +Biui(t), i ∈ N , (1)

with polytopic state and input constraints of the form

xNi ∈ XNi = {xNi |HNixNi ≤ hNi}, (2)

ui ∈ Ui = {ui|Liui ≤ li}, (3)

where hNi ∈ Rpi>0 and li ∈ Rqi>0. We consider the general
case, where the control input is given by

ui(t) = KNixNi(t) + vi(t), (4)

where K is some existing distributed controller and v is
the input calculated using distributed MPC. If no such
feedback is known, we can always set K = 0. However,
including this feedback can reduce the conservatism and
mitigate the deteriorating effects of suboptimality on
closed-loop stability. The overall system is given by

x(t+ 1) = Ax(t) +Bu(t) = (A+BK)︸ ︷︷ ︸
=:AK

x(t) +Bv(t),

(5)

with the polytopic constraints

X = {x|xNi ∈ XNi∀i ∈ N} = {x|Hx ≤ h} ⊆ Rn,
U = U1 × . . .U|N | = {u|Lu ≤ l} ⊆ Rm,

where l ∈ Rq>0 and h ∈ Rp>0. We consider a structured
quadratic stage cost `(x, v) = ‖x‖2Q + ‖v‖2R, with block

1 In case of stiff continous-time dynamics, an implicit dis-
cretization method is typically used, yielding the discrete-
time model FNixNi(t + 1) = ANixNi(t) + Biui(t). The fol-
lowing derivations are equally applicable for such models and
preserve the distributed structure, compare [24].
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diagonal positive definite matricesQ andR. We consider
an MPC framework including a terminal cost and termi-
nal set. To this end, we make the following assumption.

Assumption 1 There exists a terminal cost Vf (x) =∑
i∈N ‖xi‖2Pi = ‖x‖2P with a block diagonal matrix P ,

a distributed terminal controller ui = Kf,NixNi , and a
distributed compact polytopic setXf = {x|Fx ≤ f}, such
that the following conditions hold for each xf ∈ Xf

Vf ((A+BKf )xf ) ≤ Vf (x)− `(xf , (Kf −K)xf ),
(6a)

xf ∈ X , uf = Kfxf ∈ U , (6b)

(A+BKf )xf ∈ Xf . (6c)

Remark 2 In [3] distributed linear matrix inequalities
(LMIs) are presented that can be used to compute a dis-
tributed terminal cost and an ellipsoidal terminal set Xf .
Ellipsoidal terminal constraints lead to a (distributed)
quadratically constrained quadratic program (QCQP),
which makes the online optimization more complex.
Methods to obtain a distributed polytopic terminal set
Xf are for example given in [17,38]. The offline compu-
tation of the distributed terminal ingredients is discussed
in more detail in Appendix A.1. The proposed frame-
work can also be used without such terminal ingredients,
which is discussed in Appendix A.2,A.3.

The open-loop cost of a state sequence x(·|t) ∈ Rn×N+1

and an input sequence v(·|t) ∈ Rm×N with the predic-
tion horizon N ∈ N is defined as

JN (x(·|t), v(·|t)) :=

N−1∑
k=0

`(x(k|t), v(k|t)) + Vf (x(N |t)).

The standard MPC optimization problem is given by

VN (x(t)) = min
v(·|t),x(·|t)

JN (x(·|t), v(·|t)) (7)

s.t. x(k + 1|t) = AKx(k|t) +Bv(k|t),
x(0|t) = x(t), x(N |t) ∈ Xf ,
x(k|t) ∈ X , u(k|t) = v(k|t) +Kx(k|t) ∈ U .

The solution to this optimization problem is the value
function VN and optimal state and input trajectories
(x∗(·|t), v∗(·|t)) that satisfy the dynamic equality con-
straint and the state and input constraints. Problem (7)
is a distributed quadratic program, the solution of which
is discussed in Sections 2.2, 3.5.

For the closed-loop operation the first step of the optimal
input v∗(·|t) is applied to the system (5), resulting in the
following closed-loop system dynamics:

x(t+ 1) = AKx(t) + v∗(0|t) = x∗(1|t). (8)

The following theorem is a standard result in MPC and
establishes the desired properties.

Theorem 3 [34] Let Assumption 1 hold and assume that
Problem (7) is feasible at t = 0. Then Problem (7) is
recursively feasible and the origin x = 0 is asymptotically
stable for the resulting closed-loop system (8).

2.2 Distributed (dual) optimization

In the following, we motivate why we consider inexact
dual optimization and explain why it necessitates mod-
ifications to Problem (7). Most theoretical results for
MPC (such as Thm. 3) assume that the optimal solution
to (7) is obtained in real time, which is rarely achievable
in practice.

If primal optimization methods are used, Theorem 3 re-
mains valid with inexact optimization assuming a suit-
able initialization [37,36]. However, an application of pri-
mal optimization methods to large-scale distributed sys-
tems suffers from various difficulties, including initial-
ization and scalability.

Thus, we consider dual optimization algorithms [17,31,30],
which only require neighbor-to-neighbor communication
and can be implemented in a fully distributed manner.
The main drawback of dual optimization is that the con-
straints (dynamic, state and input) are not necessarily
satisfied after finite iterations. This necessitates addi-
tional modifications to enable theoretical guarantees
after finite iterations, compare [35,7]. In the following,
we provide a novel MPC formulation which is suitable
for distributed computation and explicitly takes the in-
exact dynamics of approximate solutions into account.

3 Inexact Distributed MPC

In the following, we consider bounds on the accuracy ε,
interpret them as disturbances and use tools from robust
MPC [2] to compensate the effects of inexact minimiza-
tion. The proposed modifications are inspired by [7] and
directly take the inexactness of the solver into account.
By making use of an inexact candidate solution, we ob-
tain a formulation that requires no adaptation and thus
no global communication.

3.1 Inexact MPC and constraint tightening

Define an accuracy for the dynamic, state, input and ter-
minal constraints and strict feasibility εz, εx, εu, εf , ελ ∈
R>0, given by the user. Consider relaxation parameters

εz,k := ελ + (N − 1− k)(ελ + εz), k = 0, . . . , N − 1,
(9)

and the sets Wk = {w ∈ Rn|‖w‖∞ ≤ εz,k + εz}. We
tighten the constraints using the k-step support func-
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tion [4], which for some a ∈ Rn and k ∈ N is defined as

σW(a, k) = sup
w∈Wk

0

a>y(k), (10)

s.t. y(l + 1) = AKy(l) + w(l), y(0) = 0.

The tightened state and input constraints are given by

X k = {x|Hx ≤ hk}, Uk = {u|Lu ≤ lk},

with

hj,k = hj − σW(H>j , k)− εx − k(εx + ελ), (11)

lj,k = lj − σW(K>L>j , k)− εu − k(εu + ελ). (12)

Here, hj,k denotes the j-th component of hk, hj the j-
th component of h and Hj the j-th row of H, j ≤ p.
The evaluation of the k-step support function amounts
to solving a distributed linear program (LP) offline. The
resulting tightened constraints preserve the distributed
structure and can equally be represented with the local
polytopic sets XNi,k,U i,k.

Assumption 4 Consider the terminal cost and con-
troller from Assumption 1. There exists a compact
tightened terminal set X f = {x|Fx ≤ f}, such that the
following conditions hold

X f,ε
N−1⊕
k=0

AN−1−kK Wk ⊆ Xf , (13a)

X f,ε ⊕AN−1K W0 ⊆ {x|Hx ≤ hN−1 − 1pελ}, (13b)

Kf (X f,ε ⊕AN−1K W0) ⊆ {u|Lu ≤ lN−1 − 1qελ}, (13c)

(A+BKf )
(
X f,ε ⊕AN−1K W0

)
⊆ X f,λ, (13d)

X f,ε := {x|Fx ≤ f + 1rεf}, X f,λ := {x|Fx ≤ f − 1rελ}.

The sets X f,ε, X f,λ are needed to study strict recursive
feasibility (ελ) under inexact minimization (εf ). A suffi-

cient condition for (13b) is X f,ε ⊆ XN . In case Kf = K,

KfX f,ε ⊆ UN is a sufficient condition for (13c). Con-
dition (13d) requires contractivity of the terminal set,
despite the additive disturbance w0.

If the terminal set in Assumption 1 is contractive, As-
sumption 4 can be satisfied with the following design
procedure: for a fixed accuracy ε and prediction horizon
N , compute the tightened constraints (11). Then scale
the terminal set Xf such that conditions (13a)-(13c) are
satisfied. Finally, verify that condition (13d) is satisfied.
If this is not the case, decrease ε and start over. In the ap-
pendix, we show that the proposed framework can also
be used without constructing a terminal set.

With this, we define the modified optimization problem

min
v(·|t),z(·|t)

JN (z(·|t), v(·|t)) (14a)

s.t. ‖AKz(k|t) +Bv(k|t)− z(k + 1|t)‖∞ ≤ εz,k,
(14b)

z(k|t) ∈ X k, v(k|t) +Kz(k|t) ∈ Uk, (14c)

k = 0, . . . , N − 1,

z(N |t) ∈ X f , (14d)

z(0|t) = x(t). (14e)

Compared to the original optimization Problem (7), the
state and input constraints are tightened and the dy-
namic equality constraints are relaxed to inequality con-
straints. We do not try to find a solution that exactly
satisfies the dynamic constraints, but only consider a re-
laxed dynamic constraint with the parameter εz,k. This
relaxation will allow us to construct a feasible candi-
date solution which again does not exactly satisfy the
dynamic constraints. This is the key insight and novelty
in order to prove recursive feasibility and stability un-
der inexact minimization. The resulting Problem (14) is
a distributed quadratic program with linear inequality
constraints.

To study recursive feasibility of (14) under the inexact
DMPC we introduce the notion of ε-feasible solutions.

Definition 5 An ε-feasible solution to (14) is any pair
(zε(·|t), vε(·|t)), that satisfies

‖AKzε(k|t) +Bvε(k|t)− zε(k + 1|t)‖∞ ≤ εz,k + εz,
(15)

Hzε(k|t) ≤ hk + 1pεx,

L(vε(k|t) +Kzε(k|t)) ≤ lk + 1qεu,

F zε(N |t) ≤ f + 1rεf , zε(0|t) = x(t).

This formulation allows a constraint violation for the
posed constraints (14b)-(14d) by εz, εx, εu, and εf , re-
spectively. A corresponding algorithm to ensure an ε-
feasible solution with finite iterations is presented in Sec-
tion 3.5.

3.2 Feasible consolidated trajectory

In order to characterize the feasibility of on an ε-feasible
solution, we consider the consolidated 2 trajectory [7].

Proposition 6 Let Assumptions 1 and 4 hold. Given
an ε-feasible solution (15) zε(·|t), vε(·|t) at time t, the

2 The feasibility recovery scheme described in [19] to obtain
a (dynamically) feasible solution is comparable to the defi-
nition of the consolidated trajectory.
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consolidated state and input trajectories xε(·|t), uε(·|t)

xε(k + 1|t) := AKxε(k|t) +Bvε(k|t), xε(0|t) := x(t),

uε(k|t) := Kxε(k|t) + vε(k|t), (16)

satisfy

xε(k|t) ∈ X , uε(k|t) = vε(k|t) +Kxε(k|t) ∈ U ,
xε(N |t) ∈ Xf .

PROOF. The inexact relaxed dynamic constraint (15)
can be equivalently written as a dynamic equality con-
straint with an additive disturbance

zε(k + 1|t) = AKzε(k|t) +Bvε(k|t) + wk, wk ∈ Wk.
(17)

The consolidated trajectory (16) satisfies

xε(k|t) ∈ {zε(k|t)}
k−1⊕
l=0

Ak−l−1K Wl

(9)

⊆ {zε(k|t)}
k−1⊕
l=0

AlKW0,

(18)

which implies

Hjxε(k|t)
(10)

≤ Hjzε(k|t) + σW(H>j , k)

Def. 5
≤ hj,k + εx + σW(H>j , k)

(11)

≤ hj ,

Ljuε(k|t)
(10)

≤ Lj(vε(k|t) +Kzε(k|t)) + σW(K>L>j , k)

Def. 5
≤ lj,k + εu + σW(K>L>j , k)

(12)

≤ lj .

Terminal constraint satisfaction follows by condi-
tion (13a) in combination with the characterization (18)
for k = N . �

Proposition 6 shows that the consolidated trajectory
based on the inexact optimization has all the de-
sirable properties of the standard optimal solution
x∗(·|t), u∗(·|t) to Problem (7). The closed-loop system
resulting from an inexact DMPC is given by

u(t) = Kx(t) + vε(0|t) = uε(0|t), (19)

x(t+ 1) = AKx(t) + vε(0|t) = xε(1|t).

Thus, Prop. 6 implies that the closed loop based on an ε-
feasible solution satisfies the state and input constraints.

Remark 7 In order to show feasibility of the consoli-
dated trajectory, the constraint tightening (11),(12) could
be formulated without the term k(εx + ελ) and the sup-
port function could be defined based on the smaller set

W0 × · · · × Wk, compare [7]. The more restrictive con-
straint tightening will be crucial in order to establish re-
cursive feasibility of Problem (14) for the closed-loop sys-
tem (19) based on an ε-feasible solution. The issue of us-
ing a more conservative constraint tightening to establish
recursive feasibility is also addressed in [19,35].

3.3 Recursive feasibility under inexact minimization

The following Theorem is the main contribution of this
paper. It establishes recursive feasibility of Problem (14)
under the inexact MPC control law with a suitable can-
didate solution.

Theorem 8 Let Assumptions 1 and 4 hold. Given an
ε-feasible solution (15) zε(·|t), vε(·|t) at time t, the can-
didate sequence

ṽ(k|t+ 1) = vε(k + 1|t), k = 0, . . . , N − 2, (20)

ṽ(N − 1|t+ 1) = (Kf −K)z̃(N − 1|t+ 1),

z̃(0|t+ 1) = x(t+ 1) = zε(1|t) + w0, w0 ∈ W0,

z̃(k|t+ 1) = zε(k + 1|t) +AkKw0, k = 0, . . . , N − 1,

z̃(N |t+ 1) = (A+BKf )z̃(N − 1|t+ 1),

is an ελ-strictly feasible solution to the optimization
Problem (14) at time t + 1. Problem (14) is recursively
feasible for the closed-loop system (19).

PROOF. The proof is composed of three parts. First,
we show strict satisfaction of the relaxed dynamic con-
straints. Then we show strict satisfaction of the tight-
ened state and input constraints. Finally, we show strict
satisfaction of the terminal constraint and thus estab-
lish recursive feasibility.
Part I: Show that the candidate sequence z̃(·|t +
1), ṽ(·|t+1) in (20) strictly satisfies the relaxed dynamic
constraint (14b): The candidate input ṽ(·|t + 1) (20)
is constructed by shifting the previous input sequence
vε(·|t) by one time step and appending the terminal con-
troller Kf . The state sequence zε(·|t) is shifted with an
additional error term w0 propagated through the sys-
tem dynamics to ensure satisfaction of the initial state
constraint (14e). Substituting (17) in z̃(·|t+ 1) yields

z̃(k|t+ 1) = zε(k + 1|t) +AkKw0

= AKzε(k|t) +Bvε(k|t) +AkKw0 + wk
= AK z̃(k − 1|t+ 1) +Bṽ(k − 1|t+ 1) + wk,

for k = 1, . . . , N −1, with ‖wk‖∞ ≤ εz,k + εz = εz,k−1−
ελ. Similarly, the last dynamic constraint (k = N) is
satisfied with equality, which implies that all relaxed dy-
namic constraints are strictly satisfied with εz,N−1 = ελ.
Part II: Show that the candidate sequence (20) strictly
satisfies the state and input constraints (14c): Due to the
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definition of the support function 3 and linear superpo-
sition we have

σW(H>j , k + 1) ≥ σW(H>j , k) +HjA
k
Kw0, ∀w0 ∈ W0,

which implies

hj,k+1 +HjA
k
Kw0 ≤ hj,k − (εx + ελ).

The candidate sequence satisfies

Hj z̃(k|t+ 1) = Hjzε(k + 1|t) +HjA
k
Kw0

≤ hj,k+1 +HjA
k
Kw0 + εx ≤ hj,k − ελ, k = 0, . . . , N − 2.

and hence the state constraints are strictly satisfied. For
the input constraints the same argument holds with

Lj(ṽ(k|t+ 1) +Kz̃(k|t+ 1))

= Lj(vε(k + 1|t) +Kzε(k + 1|t) +KAkKw0)

≤ lj,k+1 + εu + LjKA
k
Kw0 ≤ lj,k − ελ, k = 0, . . . , N − 2.

Given zε(N |t) ∈ X f,ε, conditions (13b) and (13c) imply
strict satisfaction of the state and input constraints at
k = N − 1.
Part III: Show that the terminal state of the candi-
date sequence (20) strictly satisfies the terminal con-
straint (14d): Condition (13d) ensures

z̃(N |t+ 1)

= (A+BKf )z̃(N − 1|t+ 1)

= (A+BKf )(zε(N |t) +AN−1K w0)

∈ (A+BKf )(X f,ε ⊕AN−1K W0) ⊆ X f,λ ⊂ X f . �

This theorem ensures recursive feasibility under inex-
act dual optimization with bounded constraint violation.
The candidate solution z̃ with the corresponding tight-
ened (and shifted) constraint set X k is sketched in Fig-
ure 1. The tightened constraint set X k is constructed,
such that ε-feasibility of zε(·|t) implies ελ-strict feasibil-
ity of z̃(·|t + 1) w.r.t. the shifted constraint set X k, de-
spite the error w0.

3.4 Closed-loop stability

To study stability properties of the closed-loop system,
we use the following definition regarding the subopti-
mality of the inexact solution.

3 This would not hold, if we would use W0 × · · · × Wk−1

for the definition of the k-step support function, compare
Remark 7.

zε
z̃

w0

k

X k X k

Fig. 1. Illustration of the strictly feasible candidate sequence
z̃(·|t+1) in relation to the previous solution zε(·|t), the error
in the first dynamic constraint w0 and the (shifted) tightened

constraints X k over the prediction horizon.

Definition 9 Given an ε-feasible solution (Def. 5), the
suboptimality η w.r.t. the optimal solution is defined as

JN (xε(·|t), vε(·|t)) ≤ VN (x(t)) + η. (21)

The inexact optimal solution is given by

VN,ε(x(t)) := min
z(·|t),v(·|t)

JN (z(·|t), v(·|t)) (22)

s.t. z(·|t), v(·|t) satisfy (15).

The suboptimality ηε with respect to this inexact optimal
solution is given by

JN (zε(·|t), vε(·|t)) ≤ VN,ε(x(t)) + ηε. (23)

Solutions satisfying (15),(21),(23) are called (ε, η, ηε)-
approximate solutions.

Corresponding bounds on the suboptimality for inexact
dual optimization will be established in Proposition 12.
The following proposition shows that the proposed inex-
act DMPC approximately preserves the stability prop-
erties of nominal MPC based on exact optimization.

Proposition 10 Let Assumptions 1 and 4 hold. Given
an (ε, η, ηε)-approximate solution zε(·|t), vε(·|t) (Def. 9)
at time t, the candidate sequence z̃(·|t + 1), ṽ(·|t + 1) in
Theorem 8 implies

VN (x(t+ 1)) ≤ VN (x(t))− `(x(t), v(t)) + η. (24)

Hence the origin x = 0 is practically asymptotically sta-
ble [13, Def. 2.15] for the closed-loop system (19) based
on (ε, η, ηε)-approximate solutions at each time t. Given
a sufficiently small ε, ηε, the additional bound

VN,ε(x(t+ 1)) ≤ VN,ε(x(t))− `(x(t), v(t)) + ηε + β1
(25)

holds with β1 according to (26).

PROOF. Part I: Consolidated cost VN : The candi-
date input sequence ṽ(·|t+ 1) from Theorem 8 with the
corresponding consolidated state trajectory x(·|t+ 1) is
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a feasible solution to (7) (Prop. 6). Using suboptimality
η according to Definition 9, this implies

VN (x(t+ 1)) ≤ JN (x(·|t+ 1), v(·|t+ 1))

(6a)

≤ JN (xε(·|t), vε(·|t))− `(x(t), v(t))

(21)

≤ VN (x(t)) + η − `(x(t), v(t)).

Practical asymptotic stability follows from standard
Lyapunov arguments.
Part II: Inexact optimal cost VN,ε: There exist con-

stants α, α, such that zε ∈ X f implies Vf (zε) ≤ α,

and Vf (zε) ≤ α implies zε ∈ X f . In the following we

consider a bound VN,ε(x(t)) ≤ V ε − ηε, with some

V ε ≥ α + ηε, which is recursively established in the
end. This bound in combination with the suboptimal-
ity implies JN (zε(·|t), vε(·|t)) ≤ V ε. The stage cost and
terminal cost of the candidate solution satisfy

`(z̃(k|t+ 1), ṽ(k|t+ 1))− `(zε(k + 1|t), vε(k + 1|t))

≤ ‖AkKw0‖2Q + 2

√
V ε‖AkKw0‖Q, k = 0, . . . , N − 1,

Vf (z̃(N − 1|t))− Vf (zε(N − 1|t))
≤ ‖AN−1K w0‖2P + 2

√
α‖AN−1K w0‖P .

The cost of the candidate trajectory satisfies

JN (z̃(·|t+ 1), ṽ(·|t+ 1))− JN (zε(·|t), vε(·|t))
(6a)

≤ − `(x(t), v(t)) + Vf (z̃(N − 1|t+ 1))− Vf (zε(N |t))

+

N−2∑
k=0

`(z̃(k|t+ 1), vε(k + 1|t))− `(zε(k + 1|t), vε(k + 1|t))

≤ − `(x(t), v(t)) + β1,

with

β1 :=

N−2∑
k=0

‖AkKw0‖2Q + 2

√
V ε‖AkKw0‖Q (26)

+ ‖AN−1K w0‖2P + 2
√
α‖AN−1K w0‖2P .

Using feasibility based on Theorem 8 and suboptimality
ηε according to Definition 9, this implies

VN,ε(x(t+ 1)) ≤ JN (z̃(·|t+ 1), ṽ(·|t+ 1))

≤ JN (zε(·|t), vε(·|t))− `(x(t), v(t)) + β1
(23)

≤ VN,ε(x(t)) + ηε + β1 − `(x(t), v(t)).

The upper bound V ε is valid recursively, if ε, ηε are
sufficiently small, such that the following inequality
holds V ε − ηε ≥ α ≥ λmax(P/Q)(β1 + ηε), compare [23,
Lemma 7, Thm. 8]. �

Theorem 8 in combination with Proposition 10 en-
sures recursive feasibility and practical asymptotic sta-
bility under inexact dual optimization with bounded
constraint violation and suboptimality. Both inequal-
ities (24), (25) are each independently sufficient for
practical asymptotic stability with the corresponding
value functions VN , VN,ε as practical Lyapunov func-
tions. The stability analysis based on VN,ε tends to be
less conservative (compare Prop. 12) and is only possi-
ble since we explicitly refrain from adapting the accu-
racy ε online, contrary to [7,9,29]. This is why we also
prove the technically more difficult, but potentially less
conservative, bounds on the inexact value function (25).

Remark 11 Due to the inexact dynamic constraint (14b),
the input vε = 0 is the optimal solution to Problem (14)
if ‖x(t)‖ is small enough. This property is another reason
why the additional feedback in (4) can be advantageous.

3.5 Dual distributed optimization

In the following, we describe how to obtain an approx-
imate solution to Problem (14) with finite dual dis-
tributed iterations. Problem (14) can be formulated 4 as

min
y

1

2

∑
i∈N
‖yi‖2Qi

s.t.
∑
j∈Ni

Cijyj ≤ ci, i ∈ N ,

yi = (vi(0|t), zi(1|t), ...vi(N − 1|t), zi(N |t)), c ∈ Rnc .

The local dual gradient is Lipschitz with Ldi =
‖[Cji]j∈Ni‖

2

λmin(Qi)
. We consider the distributed dual gradi-

ent algorithm [30], with the local step size Wµ,i =∑
j∈Ni Ldj .

Algorithm 1. Distributed Dual Gradient (DDG)
Given Lipschitz constant Wµ,i (computed offline)
Initialization: set initial guess µ0

1: for p = 0, . . . p do

2: yp+1
i = −Qi

−1∑
j∈Ni C

>
jiµ

p
j

3: µp+1
i = [µpi +W−1µ,i (

∑
j∈Ni Cijy

p+1
j − ci)]+

4: end for

Here [ ]+ denotes the projection on the nonnegative or-
thant. This is an iterative synchronous algorithm, which
consists of small-scale multiplications and requires only
local communication. The following proposition summa-
rizes the theoretical properties of this algorithm.

Proposition 12 Suppose there exists an ελ-strictly fea-
sible solution ỹ to Problem (14) and consider the ini-

4 The minimization can be further decoupled along the time
axis with the variables yi,k = [vi(k|t), zi(k|t)], compare [7].
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tialization 5 µ0 = 0. For all p ≥ p, yp is an (ε, η, ηε)-
approximate solution (Def. 5, 9) with

p = 2 + logd[ελ ε ‖W−1µ ‖/V ε], d < 1, (27a)

ηε =
√
nc V ε ε/ελ +

1

2
ε2‖W−1µ ‖, (27b)

η =
√
nc V ε εN/ελ +

1

2
ε2‖W−1µ ‖, (27c)

εN = max{ε, εz,0, hj,N−hj , lj,N−lj}, ε = min{εz, εx, εu, εf},
ε = max{εz, εx, εu, εf}, V ε = ‖ỹ‖2

Q
.

PROOF. This result is based on [30, Thm. 4.2-4.4] and
strict feasibility.
Part I: Given the ελ-strictly feasible solution ỹ, the fol-
lowing upper bound holds for the optimal dual variable
µ∗ (compare [7, Lemma 1])

‖µ∗‖ ≤
‖ỹ‖2

Q
− ‖y∗‖2

Q

ελ
≤
‖ỹ‖

Q
2

ελ
≤ V ε/ελ.

Based on [30, Thm. 4.2] the constraint violation satisfies

‖[Cyp − c]+‖ ≤ dp−2 V ε/ελ‖Wµ‖,

with the fixed constant d < 1 according to [30, Thm. 3.2,
Thm. 4.2]. Correspondingly, for p ≥ p, yp is an ε−feasible
solution, with p according to (27a).
Part II: Analogous to [7, Thm. 1], we can derive the
following bound based on the dual variables and the
relaxation

VN,ε(x(t)) ≤ JN (z∗(·|t), v∗(·|t)) +
√
nc V ε ε/ελ,

where z∗, v∗ is the optimal solution to (14). By combin-
ing this result with the relative suboptimality ηy of yp

([30, Thm. 4.4]), we can establish the following bound

ηε ≤ ‖µ∗‖1 ε+ ηy ≤
√
nc V ε ε/ελ + ηy,

ηy :=
1

2
(dp−1 V ε/ελ)2‖Wµ‖ ≤

1

2
ε2‖W−1µ ‖.

The same derivations hold for η, using the maximal size
of the constraint tightening εN instead of ε. �

Remark 13 Given a user specified accuracy ε, this
proposition gives an a priori upper bound on the number
of iterations p for a given sublevel set of VN,ε. In com-
bination with Theorem 8 and Proposition 10, this prop-
erty holds recursively under the approximate DMPC.
In closed-loop operation the value of V N,ε decreases
(Prop. 10) and thus the number of necessary iterations p

5 The following properties remain valid if the initialization
µ0 satisfies ‖µ0 − µ∗‖W ≤ ‖µ∗‖W .

based on (27a) decreases. Using a larger tolerance ε leads
to fewer iterations p and a larger suboptimality η, ηε.
The bound for ηε is (typically) significantly smaller than
η, which is crucial for the stability analysis (Prop. 10).
Instead of choosing a desired accuracy ε, a user can also
specify an upper bound on the number of iterations p and
choose a sufficiently small accuracy ε using (27a). There
exists a variety of distributed dual algorithms for which
similar complexity bounds can be obtained. If an alter-
nating minimization algorithm such as [17,7] is used, the
relationship between the inexactness of the optimization
ε and the resulting inexactness in the dynamic constraint
changes, see [7,24].

The initialization and closed-loop operation of the MPC
scheme is summarized in the following two algorithms.

Algorithm 2. Offline distributed synthesis
1. Set design parameters εz, εx, εu, εf , ελ ∈ R>0.
2. Compute tightened constraints (11), (12).
3. Compute terminal cost and set (Ass. 4).
4. Compute Lipschitz constant Wµi (for Alg. 1).

Algorithm 3. Online DMPC, execute at every time step t
1. Measure the state x(t).
2. Compute candidate dual variable µ0.
3. Approximately solve Problem (14) with Alg. 1.
4. Apply control input: ui(t) = KNixNi(t) + vi,ε(0|t).

Instead of using the (possibly conservative) a priori
bound p, a stopping condition ensuring an ε-feasible
solution (Def. 5) can be used, which can be efficiently
and distributedly checked online, compare Section 4.
All the necessary offline and online computations can be
accomplished in a fully distributed and scalable fashion.

3.6 Comments

By combining Theorem 8 and Propositions 10 and 12, we
can ensure recursive feasibility and practical asymptotic
stability with finite distributed dual iterations. While
parts of the proof might be technical, the application of
the proposed method is straightforward. The bounds on
the suboptimality ηε, η and the resulting closed-loop sta-
bility guarantees (Prop. 10, Prop. 12) tend to be conser-
vative and should rather be interpreted as a conceptual
result of how the inexact minimization affects stability.

We prove the theoretical properties of the proposed
framework within the standard MPC setup including a
terminal cost and a polytopic terminal set. In various
applications and setups, different variations of MPC
can be advantageous (such as MPC without terminal
ingredients or economic MPC). The Appendix shows
in detail under which conditions similar results can be
derived for these different setups.
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The following remark discusses similarities of the pro-
posed framework to existing schemes and highlights the
novelty based on the inexact candidate solution.

Remark 14 In [35] violations in the inequality con-
straints (state and input constraints εx, εu) are consid-
ered. The corresponding constraint tightening can be
viewed as a special case (εz = 0) of the proposed method.

In [19] a constraint tightening is proposed to ensure recur-
sive feasibility of the consolidated trajectory despite inex-
act dynamic constraints. The a priori complexity bounds
(Prop. 12) do not hold for this formulation due to the
usage of equality constraints and lack of strict feasibility.

In [9] the stopping condition is based on an explicit can-
didate solution for the next time step, which needs to be
computed online. This requires additional online compu-
tations and bounds on the number of iterations cannot be
given (in contrast to ε-feasibility as used in [35,29,7]).

In [29,7] the constraints are tightened, such that the con-
solidated trajectory is (strictly) feasible (Prop. 6). Recur-
sive feasibility is ensured be adapting the accuracy ε and
constraint tightening online. This adaptation requires
global communication, is complex, and it is a priori un-
clear whether the number of online iterations increases
or decreases in closed-loop operation. One of the main
benefits of the proposed framework is that such an adap-
tation is not needed (although incorporating an optional
adaptation, if possible, could be beneficial).

To the best of our knowledge, the proposed result is the
first MPC result based on a dynamic inexact candidate
solution. As discussed above, the use of such an inex-
act candidate solution is possible through relaxing the
dynamic constraint (14b) and is the key ingredient for
establishing recursive feasibility with a fixed constraint
tightening, allowing for a fully distributed implementa-
tion of the proposed scheme with finite dual iterations.

4 Numerical Example

In the following, we show the practicality of the proposed
approach with the example 6 of a chain of masses [3]. We
consider M = 20 subsystems with randomly sampled
mass m ∈ [0.5, 1.5], spring constant k ∈ [1.5, 4.5], damp-
ing constant d ∈ [1.5, 4.5] and use an Euler discretiza-
tion with h = 0.1 s. The cost is Q = I, R = I and the
constraints are ‖ui‖∞ ≤ 10, |[1, 0]xi| ≤ 10, |[0, 1]xi| ≤ 1,
‖xi − xj‖∞ ≤ 3, j ∈ Ni. The resulting system has 40
states, 20 inputs, and coupled dynamics and constraints.

6 To improve the numerical conditioning, we set ũ = 10 · u.
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Fig. 2. Closed-loop Inexact DMPC: Inexact cost JN (zε, vε)
(left) and number of iterations p (right) with different ini-
tialization µ0 vs. time t.

Offline computation

In the following we detail the offline computations. We
consider no additional feedback, i.e., K = 0. We choose
a prediction horizon of N = 4 and the tolerance is cho-
sen as ε = 2.5 · 10−3 = εz = εx = εu = ελ = εf . The
constraints are tightened with the k-step support func-
tion (11), (12). We compute a distributed terminal cost
P that satisfies (6a) with distributed LMIs as in [3]. For
the terminal set, we consider decoupled local terminal
sets X f = X f,1 × . . .X f,M , with symmetric local sets

X f,i = {xi| Gxi ≤ qi, −Gxi ≤ qi}, G> =

(
1 0 1 1

0 1 1 −1

)
.

The vectors qi are determined using the method in [38],
such that the set X f,ε is (robust) positively invariant
for the dynamics A + BKf , by solving a (distributed)
LP. This terminal set is scaled, such that the condi-
tions (13c),(13b) are satisfied. Finally, we verify that this
terminal set satisfies condition (13d) and thus Assump-
tions 1, 4 are satisfied. The overall offline computations
are accomplished in 60 s with an Intel Core i7.

Simulations - Stability and dual initialization

In the following, the online optimization (Alg. 1) is
stopped once an ε-feasible solution (Def. 5) is obtained.
We explore the effect of the initialization µ0 (Alg. 3) on
the number of dual iterations p. Simple initialization
strategies are µ0 = 0, using the previous dual variables
µ0 = µp, or shifting µp similar to the shifted candi-
date solution z̃ in Theorem 8 (and appending zero at
the end). We consider an initial condition with random
positions and zero velocity. The inexact cost JN (zε, vε)
and number of dual iterations p for the resulting closed
loop can be seen in Figure 2. As expected, the predicted
cost JN decreases and the origin is (practically) asymp-
totically stable (Prop. 10). Clearly, using the previous
solution µp can significantly reduce the number of online
iterations. Since the cost JN with different initializa-
tion µ0 only varies marginally, a suitable initialization
simply reduces the number of online iterations.

In the following, we quantitatively explore the effect of
the tolerance ε and the number of subsystems M on the

9
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Fig. 3. Quantitative impact of tolerance ε and number of
subsystems M on number of iterations p.

closed-loop computational demand. We consider the ini-
tialization based on the shifted vector µp. In Figure 3 we
can see the number of online iterations p in each time step
for different numbers of subsystems M ∈ {5, 10, 15, 20}
and tolerances ε ∈ {2.5·10−3, 10−3, 10−4}. If we increase
the number of subsystems M , the number of dual itera-
tions tends to increase slightly (due to the increased cost
V ε, compare Prop. 12). In contrast, if we chose a smaller
tolerance ε the number of dual iterations increases sig-
nificantly. Thus, by choosing a larger tolerance ε, we can
consider significantly more subsystems M without in-
creasing the number of online dual iterations p.

To summarize: Compared to a nominal DMPC, the de-
sign procedure only requires the additional computation
of the tightened constraints for the chosen tolerance ε.
With the proposed modifications, the closed loop satis-
fies the constraints and the effect of inexact minimiza-
tion on closed-loop stability is negligible. Thus, we can
significantly reduce the online computational demand
by allowing for a non-vanishing tolerance ε without any
major downside. The main limitation to consider more
subsystems M and a larger tolerance ε is the construc-
tion of the polytopic terminal set X f and the robust
positive invariance condition (13d).

5 Conclusion

We have proposed a new formulation for DMPC based
on inexact dual optimization. The online optimization
can be accomplished in a fully distributed manner us-
ing standard dual distributed optimization methods and
only has to obtain an approximate solution. We have es-
tablished recursive feasibility, constraint satisfaction and
practical stability of the closed loop based on such an
approximate solution. This is possible through the usage
of a reformulated optimization problem and a novel can-
didate solution, which both explicitly consider the inex-
actness of the optimization. This modified formulation
enables practical applications of MPC to large-scale sys-
tems with fast dynamics, for which the underlying MPC

optimization problem cannot be solved in real time.
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A novel constraint tightening approach for nonlinear robust
model predictive control. In Proc. American Control Conf.
(ACC), pages 728–734, 2018.
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A Extensions

This appendix discusses the distributed offline compu-
tation and details how the proposed framework (in par-
ticular Thm. 8 and Prop. 10) can be extended to dif-
ferent MPC setups. In Section A.1 the distributed of-
fline computation is discussed and a novel algorithm for
the computation of the distributed polytopic terminal
set is presented. In Section A.2 MPC without explicit
terminal constraints is discussed. Next, in Section A.3
we show that the closed-loop properties can be guaran-
teed without using a terminal cost. In Section A.4 these
results are extended to unreachable setpoints and eco-
nomic MPC. Section A.5 shows how using multi-step
MPC can be beneficial in the proposed framework. Fi-
nally, Section A.6 discusses the necessary steps to extend
the framework to nonlinear systems.

Notation

We require the following additional notation. For posi-
tive definite matrices P, Q we denote the minimal and
maximal eigenvalue for the generalized eigenvalue prob-
lem (P − λjQ)vj = 0 by λmin(P/Q) and λmax(P/Q),
respectively. By K we denote the class of functions α :
R≥0 → R≥0, which are continuous, strictly increasing
and satisfy α(0) = 0. We denote the class of functions
δ : R≥0 → R≥0, which are continuous and decreasing
with lim→∞ δ(k) = 0 by L.

A.1 Distributed offline computation

In order to implement the proposed distributed scheme,
a block-diagonal terminal cost P in combination with
a distributed feedback Kf is needed (Ass. 1). Further-

more, a distributed polytopic terminal set X f (Ass. 4)
is necessary. In the following, we briefly summarize how
these offline computation can be accomplished is a scal-
able distributed fashion.

Distributed terminal cost

In a centralized setting, Assumption 1 is standard when
using an MPC framework including a terminal cost and
terminal set [34]. Concerning the distributed setting of
this paper, in [3] distributed linear matrix inequalities
(LMIs) are presented that can be used to compute a dis-
tributed terminal cost P . Once a stabilizing controller
Kf is given, it is also possible to compute a less conserva-
tive terminal cost of the form Vf (x) =

∑
i∈N xNiPixNi ,

compare [4]. We need to consider some distributed struc-
ture for P, Kf to allow for a scalable offline and online
optimization. Correspondingly, the procedures are only
sufficient conditions. If it is not possible to compute such
a distributed matrix P , the terminal cost can also be
omitted, which is discussed in Section A.3.

Distributed polytopic terminal sets

In order to satisfy Assumption 4, we need to compute
a distributed (robust) positively invariant polytope X f .
In a central setting, computing a (robust) positively in-
variant polytope can be done using standard methods,
compare [8,32]. Computing a distributed positively in-
variant polytopic set is largely still an open problem. In
the following we discuss one method based on [38] to
compute a distributed polytopic terminal set. First, we
choose a set of r half spaces Fj , that parameterize a ter-

minal set of the form X f = {x| Fx ≤ f}. By choosing
Fj , we can impose any desired distributed structure on

X f . Given F , the method in [38] presents a linear pro-

gram (LP) to compute f , such that X f is robust posi-
tively invariant for the dynamics A+BKf and a distur-
bance set W. If F, A+BKf and W have a distributed
structure, the resulting LP also has a distributed struc-
ture and can be solved efficiently. Thus, we can compute
a distributed polytopic terminal set, satisfying Assump-
tion 4. The main limitation of this method is the fact that
the half-spaces Fj need to be chosen in advance by the
user. There is in general no guarantee that a distributed
polytopic terminal set exists and how complex (number
of vertices/half-spaces) the local polytopes need to be.
Thus, we also briefly discuss some alternatives.

Given the block-diagonal terminal cost P , it is possible
to use (distributed) ellipsoidal terminal sets X f which
satisfy Assumption 1, compare [3]. However, the draw-
back is that the ellipsoidal terminal constraints lead to
a (distributed) quadratically constrained quadratic pro-
gram (QCQP), which makes the online optimization
more complex.

The requirement of positive invariance can also be re-
laxed. In particular, given a Schur stable matrix Ã, any
compact (distributed) polytopic set X f is positively in-

variant for the system ÃM , with M large enough. In [17]
this is used to construct a distributed polytopic termi-
nal set for multi-step MPC, which is discussed in Sec-
tion A.5.

If we are unable to construct a suitable distributed ter-
minal constraint, the terminal constraint can also be im-
plicitly enforced, which is discussed in Section A.2.

Distributed robustly stabilizing feedback

The proposed framework is such that the MPC input v
can be augmented by an additional (optional) feedback
K, compare (4). If we do not know any suitable feedback,
we can always choose K = 0. If Assumption 1 is satis-
fied, one natural choice for this feedback is the terminal
controller, i.e., K = Kf , which also simplifies some for-
mulas. It is also possible to compute a distributed feed-
back K, which is specifically designed to reduce the con-
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straint tightening. In particular, by extending the pro-
cedure in [25] one can compute a distributed feedback
K that minimizes the resulting constraint tightening for
a given disturbance w, see [20, Sec. 2.4] for details. We
would like to point out, that although the feedback K
can reduce conservatism in the constraint tightening, it
may also have an adversarial impact on the conditioning
of the optimization problem.

A.2 MPC without explicit terminal constraints

Computing a polytopic distributed terminal set
(Ass. 1,4) can be difficult (App. A.1), if not impossible.
Given a block diagonal terminal cost P , it is possible to
obtain a suitable distributed ellipsoidal constraint, com-
pare [3]. However, including such quadratic constraints
increases the online computational complexity. The
following proposition shows that (ε, η, ηε)-approximate
solutions implicitly satisfy the terminal constraints if
the terminal cost P or the prediction horizon N are
chosen large enough, similar to [26].

Proposition 15 Let Assumptions 1 and 4 hold. There
exist constants α, α ∈ R>0, such that ‖x‖2P ≤ α and

‖z‖2P ≤ α implies x ∈ Xf and z ∈ X f , respectively.
Consider Problem (14) without an explicit terminal con-
straint. If the open-loop cost satisfies

JN (xε(·|t), vε(·|t)) ≤ V := α(1 + λmin(Q/P )N),

η ≤ λmin(Q/P )α,

then xε(N |t) ∈ Xf . Similarly,

JN (zε(·|t), vε(·|t)) ≤ V ε := α(1 + λmin(Q/P )N),

ηε ≤ λmin(Q/P )α,

implies zε(N |t) ∈ X f,ε.

PROOF. We proof this property for the consolidated
trajectory xε with the nominal terminal set Xf . The
proof regarding the inexact trajectory zε is analogous.

The implicit satisfaction of the terminal constraint at
some point kx is a standard result [26, Lemma 2], which
is based on the bounded cost JN and the property that
‖xε(kx|t)‖2Q ≤ αλmin(Q/P ) implies xε(kx|t) ∈ Xf .
Due to suboptimality η, the terminal constraint is not
obviously satisfied at the terminal state (contrary to [26,
Lemma 1]). With the suboptimality η, the positive def-
inite stage cost and the properties of the terminal cost

Vf (Ass. 1), we have

kx∑
k=0

`(xε(k|t), vε(k|t)) + Vf (xε(N |t))

≤ JN (xε(·|t), vε(·|t)) ≤ VN (x(t)) + η

≤
kx−1∑
k=0

`(xε(k|t), vε(k|t)) + Vf (xε(kx|t)) + η.

By canceling the first kx components, this is equivalent
to

Vf (xε(N |t)) ≤ η + Vf (xε(kx|t))− `(xε(kx|t), vε(kx|t))
≤ η + (1− λmin(Q/P ))Vf (xε(kx|t))
≤ η + α(1− λmin(Q/P )) ≤ α,

where the last inequality follows if we assume η ≤
λmin(Q/P )α. This in turn implies xε(N |t) ∈ Xf . �

Proposition 15 shows that the consolidated trajectory
and the inexact trajectory satisfy the terminal constraint
without an explicit constraint 7 , if the terminal cost P
or the prediction horizon N is chosen large enough. The
guarantees in Section 3 remain valid, if the accuracy ε is
such that (24),(25) ensure positive invariance of the sub-
level sets V , V ε. Increasing the terminal cost may, how-
ever, increases the number of online iterations and might
deteriorate the stability results of the inexact DMPC.

A.3 MPC without terminal cost

Depending on the strength of the coupling in the dis-
tributed system dynamics, there might not exist a dis-
tributed terminal cost, which satisfies Assumption 1. In
addition, offline computations might be unsuitable for
changing operation points or plug-and-play setups. The
following Proposition shows that stability and recursive
feasibility can be ensured under inexact minimization
even if there does not exist a structured terminal cost,
which is an extension of the nominal results in [10], com-
pare also [9].

Proposition 16 Assume that (A,B) is stabilizable.
Consider Problem (14) without terminal constraint and
without terminal cost (Vf = 0). For any V ε, V ∈ R>0

there exists an N0 ∈ N, such that for all N ≥ N0 and ε
sufficiently small, there exist αN , β2 ∈ R>0, such that
for any (ε, η, ηε)-approximate solution at time t satisfying

JN (zε(·|t), vε(·|t)) ≤ V ε, JN (xε(·|t), vε(·|t)) ≤ V ,
(A.1)

7 Depending on the algorithm, ensuring a tight bound on
η, ηε might be difficult. A practical approach is to include the
condition ‖z(N |t)‖2P ≤ α in the sufficient stopping condition.
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the closed-loop system (19) satisfies

VN,ε(x(t+ 1)) ≤ VN,ε(x(t))− αN`(x(t), v(t)) + β2 + ηε,
(A.2)

VN (x(t+ 1)) ≤ VN (x(t))− αN`(x(t), v(t)) + η.
(A.3)

For sufficiently small β2, ηε, η and large enough αN , the
bounds (A.1) remain valid recursively for all t ≥ 0 and the
origin x = 0 is practically asymptotically stable for the
closed-loop system (19) based on an (ε, ηε)-approximate
solution.

PROOF. The analysis is analogous to the nominal
guarantees as detailed in [22, Thm. 10] based on 8 [10,
Variant 1].

Since (A,B) is stabilizable and the origin is strictly in-
side the constraints, there exists a constant α > 0, such
that the terminal set Xf = {‖x‖2P ≤ α} and the matr-
cies P, Kf based on the discrete-time linear quadratic
regulator (DLQR) satisfy the conditions (6) in Assump-
tions 1. Note, that we do not need to know P, Kf and in
general these matrices are not distributed or block diag-
onal. Similarly, for a given prediction horizon N , there
exists a small enough accuracy ε, such that the terminal
set X f = {‖x‖2P ≤ α} with α > 0 satisfies the condi-
tions (13) in Assumption 4.

Let us define γε := V ε
α λmax(P/Q). Without loss of gen-

erality, assume V ε ≥ α + ηε. For N > γε, there exists a
kx ≥ 1, with

‖zε(kx|t)‖2Q ≤
V ε
N
≤ γε
N
`(x(t), v(t)),

and thus zε(kx|t) ∈ X f,ε. Consider the candidate solu-
tion from Theorem 8 with Kf appended for k ≥ kx, i.e.

z̃(k + 1|t+ 1) = (A+BKf )z̃(k|t+ 1), k = kx, . . . , N − 1,

ṽ(k|t+ 1) = (Kf −K)z̃(k|t+ 1), k = kx, . . . , N − 1.

Using arguments similar to [22, Thm. 10], one can show
that the corresponding cost satisfies

JN (z̃(·|t+ 1), ṽ(·|t+ 1))− JN (zε(·|t), vε(·|t))

≤ (1− γε
N

(λmax(P/Q)− 1))︸ ︷︷ ︸
=:αN

`(x(t), v(t)) + β2,

with β2 ≤ β1. We can ensure αN > 0, for

N ≥ N0 := 1 + bγε(λmax(P/Q)− 1)c,

8 The proof technique [10, Variant 2/3] cannot be directly
used for suboptimal trajectories as studied in this paper.

with the floor function b c. Analogous to Prop. 10, the
closed-loop system satisfies (A.2). Recursive satisfaction
of VN,ε(x(t)) ≤ V ε − ηε is ensured with [23, Lemma 7,

Thm. 8] for V ε− ηε ≥ α ≥ 1
αN
λmax(P/Q)(β2 + ηε). The

proof regarding the consolidated trajectory is analogous,
compare the proof of Prop. 10. �

This proposition significantly relaxes the distributed sta-
bilizability condition in Assumption 1. A drawback of
this approach is that a potentially significantly larger
prediction horizon N is required. We would like to point
out, that the sufficiently small value of ε is not uni-
form, i.e., if we consider a larger prediction horizonN we
may need to choose a smaller accuracy ε. More general,
the closed-loop performance with finite dual iterations
does not necessarily improve by increasing the predic-
tion horizon N , due to the larger suboptimality η, ηε
(compare [20, Sec. 4.4.3]).

A.4 Unreachable setpoints and economic MPC

Another relevant setup includes tracking of a setpoint
(xr, vr), which is unreachable (due to constraints or dy-
namics) [33]. This is a special case of economic MPC [28].
Without loss of generality, the optimal reachable set-
point is given by (x, v) = 0. We consider the strictly
convex (economic) quadratic stage cost

`e(x, v) = ‖x‖2Q + x>q + ‖v‖2R + v>r, (A.4)

with Q, R positive definite. For this setup, a strong du-
ality condition is satisfied (see [5, Prop. 4.3]) with the
positive definite rotated stage cost

L(x, v) = λ>((I − (A+BKf ))x−Bv) + `e(x, v)

= ‖x‖2Q + ‖u‖2R.

Suppose that Assumption 4 is satisfied with the
quadratic stage cost `(x, v) = ‖x‖2Q + ‖v‖2R and some

distributed terminal cost Vf (x) = ‖x‖2P and distributed
terminal controller Kf . Then, based on a distributed
linear equality constraint one can compute a unique
vector pe ∈ Rn that satisfies

p>e (A+BKf − I) + q + r(Kf −K) = 0.

Correspondingly, the economic terminal cost

Ve(x) = ‖x‖2P + x>pe (A.5)

satisfies

Ve((A+BKf )x)− Ve(x) ≤ −`e(x, (Kf −K)x),
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compare [1]. Thus, the computation of the distributed
economic terminal cost can be done analogous to the
tracking case in [3], see [20, Sec. 2.2]. The rotated open

loop cost J̃N , the optimal rotated value function ṼN
and the inexact rotated value function ṼN,ε are defined
analogous to (7), (22) with the rotated stage cost (A.4).
Compared to (14), the resulting distributed economic
MPC problem considers the economic stage cost `e and
economic terminal cost Ve instead of the positive defi-
nite cost `, Vf . The following proposition shows that in
this setup, properties similar to Proposition 10 can be
ensured.

Proposition 17 Let Assumptions 1 and 4 be satisfied.
Suppose that the economic MPC with the economic termi-
nal cost (A.5) and a strictly convex (economic) quadratic
stage cost (A.4) is used. Given an (ε, η, ηε)-approximate
solution zε(·|t), vε(·|t) (Def. 9) at time t, the candidate
sequence in Proposition 10 implies

ṼN (x(t+ 1)) ≤ ṼN (x(t))− ‖x(t)‖2Q − ‖v(t)‖2R + η,
(A.6)

and the origin x = 0 is practically asymptotically sta-
ble for the closed-loop system (19) based on an (ε, η, ηε)-
approximate solution. Furthermore, given a sufficiently
small ε, ηε, the following additional bound holds

ṼN,ε(x(t+ 1)) ≤ ṼN,ε(x(t))− ‖x(t)‖2Q − ‖v(t)‖2R + η̃ε + β1
(A.7)

with β1, η̃ε according to (26), (A.8).

PROOF. The candidate trajectory v (Prop. 10) in
combination with the economic terminal cost implies

VN (x(t+ 1)) ≤ VN (x(t)) + η − `(x(t), v(t)),

which is equivalent to (A.6) (compare [1]). The inexact
trajectory satisfies the following rotated suboptimality
bound

J̃N (zε(·|t), vε(·|t)) ≤ ṼN,ε(x(t)) + η̃ε,

η̃ε = ηε + 2‖λ‖1
N−1∑
k=0

(εz,k + εz). (A.8)

The rest of the proof is analogous to Prop. 10, resulting
in (A.7). �

The following proposition shows that similar stability
results can be obtained in this economic setup without
terminal constraints or terminal cost.

Proposition 18 Assume that (A,B) is stabilizable and
the set X is compact. Consider Problem (14) with a

strictly convex (economic) quadratic stage cost (A.4) and
without terminal constraints and without terminal cost
(Ve = Vf = 0). For any V ε, V ∈ R>0 there exists an
N0 ∈ N, such that for all N ≥ N0 and ε sufficiently
small, there exists functions θ, θε ∈ L, such that for any
(ε, η, ηε)-approximate solution at time t satisfying

JN (zε(·|t), vε(·|t)) ≤ V ε, JN (xε(·|t), vε(·|t)) ≤ V ,
(A.9)

the closed-loop system (19) satisfies

ṼN (x(t+ 1)) ≤ ṼN (x(t))− ‖x(t)‖2Q − ‖v(t)‖2R
(A.10)

+ θ(N − 2) + η,

ṼN,ε(x(t+ 1)) ≤ ṼN,ε(x(t))− ‖x(t)‖2Q − ‖v(t)‖2R
(A.11)

+ θε(N − 2) + β2 + ηε.

For sufficiently small η, ηε, β2 and large enough N , the
bounds (A.9) remain valid recursively and the origin x =
0 is practically asymptotically stable for the closed-loop
system (19) based on an (ε, η, ηε)-approximate solution.

PROOF. The proof is analogous to the nominal guar-
antees as detailed in [21, Thm. 4,5] (see also [11]).

Similar to Proposition 16, (A,B) stabilizable implies
that there exists a terminal cost P and terminal con-
troller Kf based on the DLQR. Furthermore, for a suffi-
ciently small accuracy ε, the terminal set Xf = {‖x‖2P ≤
α} and the terminal set X f = {‖x‖2P ≤ α} with α > 0
satisfy Assumption 1 and 4, respectively. Note, that lin-
ear dynamics, quadratic cost and polytopic constraints
imply that the value function is (locally) continuous, i.e.,
there exists a functions αV ∈ K, such that |VN (x) −
VN (y)| ≤ αV (‖x‖+ ‖y‖), compare [21, Ass. 4].

Without loss of generality, assume V ≥ α + η. Denote
the optimal solution to (7) with the rotated stage cost by
(x̃∗(·|t), ṽ∗(·|t)) and define C := maxx∈X ‖λ>x‖. Analo-
gous to [21, Lemma. 3], there exists a kx ≥ 1, such that
the optimal rotated trajectory x̃∗(·|t) and xε(·|t) simul-
taneously satisfy

‖xε(kx|t)‖2Q ≤ 2
Ṽ + 2C

N − 2
=: σ(N − 2),

‖x̃∗(kx|t)‖2Q ≤ σ(N − 2), σ ∈ L.

For a sufficiently large N , we have xε(kx|t) ∈ Xf . Thus
the inexact trajectory can be appended by the terminal
controller Kf (see Prop. 16). This implies the following
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bound

ṼN (x(t+ 1))

≤
kx−1∑
k=1

‖xε(k + 1|t)‖2Q + ‖vε(k + 1|t)‖2R

+ ṼN−kx+1(xε(kx|t))
≤ J̃kx(x̃∗(·|t), ṽ∗(·|t))− ‖x(t)‖2Q − ‖v(t)‖2R + η

+ 2‖λ‖
√
σ(N − 2)

λmin(Q)
+ λmax(P/Q)σ(N − 2)

+ αV (2σ(N − 2))

≤ ṼN (x(t))− ‖x(t)‖2Q − ‖v(t)‖2R + η + θ(N − 2), θ ∈ L.

Recursive satisfaction of ṼN ≤ Ṽ − η can be ensured for

Ṽ − η ≥ α ≥ (η + θ(N − 2))λmax(P/Q).

The inexact trajectory satisfies the turnpike property
with

σε(N − 2) := 2
Ṽε + 2C

N − 2
,

which results in (A.11), with θε defined analogous to θ.
�

Proposition 18 shows that practical stability of the op-
timal steady-state can be ensured under inexact dual
minimization with minimal assumptions. While the re-
sult may look rather technical, the resulting theory can
be very useful for practical application. In particular,
suppose we have some desirable, possibly unreachable,
operation point. Then there exists a steady-state with a
minimal distance to this operation point (measured in
terms of the economic stage cost). In general, this op-
timal steady-state might not be known and thus using
a terminal cost and/or constraints to stabilize this op-
timal steady-state might be difficult in practice. Propo-
sition 18 provides an elegant and practical solution to
this problem. Since we use no terminal cost, the opti-
mal steady-state does not need to be known in order
to implement the inexact distributed economic MPC
scheme. Thus, this result ensures that it is possible to
(approximately) stabilizes the (in general unknown) op-
timal steady-state for large-scale systems by using finite
dual iterations. The application of these results to real-
time economic dispatch of distributed power networks is
explored in [24].

Remark 19 For both setups (inexact distributed eco-
nomic MPC with terminal cost and without terminal
cost), it is possible to derive guarantees for the transient
economic performance of the resulting closed-loop sys-
tem, similar to the nominal guarantees in [12,14] (com-
pare [20, Sec. 4.4]).

A.5 Multi-step MPC

In multi-step MPC, the first M ∈ N steps of the input
sequence vε(·|t) are applied and the optimization prob-
lem is solved again after M time steps. In the considered
setup, this can have multiple advantages, which are dis-
cussed in more detail. The following set of (less restric-
tive) conditions ensure strict recursive feasibility under
inexact minimization by applying M ≤ N steps of the
open-loop solution:

εz,k = ελ +
N − 1− k

M
(ελ + ε),

hj,k = hj − εx − σW(H>j , k)− k

M
(εx + ελ),

lj,k = lj − εu − σW(K>L>j , k)− k

M
(εu + ελ),

(A+BKf )M (X f,ε ⊕M−1l=0 AN−l−1K Wl) ⊆ X f,λ, (A.12)

(A+BKf )k(X f,ε ⊕M−1l=0 AN−l−1K Wl)

⊆ {x| Hx ≤ hN−M+k − 1pελ}, k ≤M − 1,

Kf (A+BKf )k(X f,ε ⊕M−1l=0 AN−l−1K Wl)

⊆ {u| Lx ≤ lN−M+k − 1qελ}, k ≤M − 1.

For M = 1 we recover the conditions in Section 3. The
parameters εz,k and the resulting constraint tightening
are significantly smaller for larger M . Furthermore, the
online computation becomes significantly less demand-
ing due to the longer sampling time in between optimiza-
tions and because a larger possible inaccuracy ε can be
chosen (due to the less restrictive constraint tightening).

As discussed in Section A.1, designing a distributed poly-
topic terminal set (Ass. 1,4) can be difficult due to the re-
quired (strict) positive invariance. Condition (A.12) can
be satisfied with arbitrary (compact) distributed termi-
nal polytopic sets for a sufficiently large M and small
enough ε (compare [17,18]).

An additional advantage of multi-step MPC is that the
necessary prediction horizon N for MPC without termi-
nal cost becomes smaller (compare [13, Sec. 10.4]).

A.6 Nonlinear system dynamics

An extension of the proposed method to nonlinear sys-
tem dynamics is not straightforward. This requires an
extension of the k-step support function [4] to nonlinear
system dynamics. To overcome this challenge, nonlinear
robust MPC approaches such as [23] might be useful to
compute a simple over-approximation of the constraint
tightening.

Additionally, an extension of Section 3.5 to the approxi-
mate solution of distributed nonlinear programs (NLP)
with finite iterations is required, see for example [16,15].

16


	Introduction
	Distributed Model Predictive Control
	Problem setup
	Distributed (dual) optimization

	Inexact Distributed MPC
	Inexact MPC and constraint tightening
	Feasible consolidated trajectory
	Recursive feasibility under inexact minimization
	Closed-loop stability
	Dual distributed optimization
	Comments

	Numerical Example
	Conclusion
	Acknowledgements
	References
	Extensions
	Distributed offline computation
	MPC without explicit terminal constraints
	MPC without terminal cost
	Unreachable setpoints and economic MPC
	Multi-step MPC
	Nonlinear system dynamics


