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A computationally efficient robust model predictive
control framework for uncertain nonlinear systems

Johannes Köhler1, Raffaele Soloperto1, Matthias A. Müller2, Frank Allgöwer1

Abstract—In this paper, we present a nonlinear robust model
predictive control (MPC) framework for general (state and
input dependent) disturbances. This approach uses an online
constructed tube in order to tighten the nominal (state and
input) constraints. To facilitate an efficient online implemen-
tation, the shape of the tube is based on an offline computed
incremental Lyapunov function with a corresponding (nonlinear)
incrementally stabilizing feedback. Crucially, the online opti-
mization only implicitly includes these nonlinear functions in
terms of scalar bounds, which enables an efficient implemen-
tation. Furthermore, to account for an efficient evaluation of
the worst case disturbance, a simple function is constructed
offline that upper bounds the possible disturbance realizations
in a neighbourhood of a given point of the open-loop trajectory.
The resulting MPC scheme ensures robust constraint satisfaction
and practical asymptotic stability with a moderate increase in
the online computational demand compared to a nominal MPC.
We demonstrate the applicability of the proposed framework in
comparison to state of the art robust MPC approaches with a
nonlinear benchmark example.

Index Terms—Nonlinear MPC, Robust MPC, Constrained
control, Uncertain systems.

I. INTRODUCTION

Motivation

Model Predictive Control (MPC) [1], [2], [3] is an optimiza-
tion based control method that can handle general nonlinear
dynamics and constraints. There exists a great body of lit-
erature on the design of MPC schemes that ensure rigorous
theoretical properties (such as recursive feasibility, constraint
satisfaction and stability), assuming that an accurate model of
the plant is available. Designing MPC schemes that ensure
these properties despite disturbances and/or uncertainty in the
model is the topic of robust MPC.

There exist sophisticated methods to account for uncertainty
and disturbances using Min-Max MPC [4], scenario MPC [5],
[6] and stochastic MPC [7], [8]. These schemes enjoy rigorous
theoretical properties and can yield good performance, but
typically suffer from a significantly increased online com-
putational demand. Under suitable conditions, nominal MPC
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schemes have inherent robustness properties [9], [10], how-
ever, in the presence of hard state constraints this robustness
margin can be arbitrary small or even nonexistent [11].

The practical compromise (in terms of performance and
complexity) is robust tube-based MPC, which uses a tube
around the nominal trajectory that confines the actual (un-
certain) system trajectory. Robust constraint satisfaction is
ensured by tightening the nominal constraints based on this
tube. The result is a certainty equivalent MPC, which uses
a nominal prediction model in combination with constraint
tightening. In this paper we present a tube-based robust MPC
scheme that is applicable to a large class of nonlinear systems
subject to general state and input dependent uncertainty.

Related work

In [12], [13] tube based robust MPC schemes for linear
systems subject to additive disturbances are presented, based
on an auxiliary linear controller in combination with a poly-
topic tube. In order to extend this approach to nonlinear
systems, a corresponding auxiliary controller together with a
simple method to compute a tube is necessary, typically in
form of sublevel sets of some incremental Lyapunov function.
In [14], [15] no stabilizing feedback is considered and a
tube is constructed based on a Lipschitz constant of the
dynamics or interval arithmetics, respectively. Although simple
to apply, these approaches become very conservative for larger
prediction horizons. In [16] a quadratic incremental Lyapunov
function with a linear auxiliary controller are computed offline,
which are used to design a robust MPC scheme that is
applicable to nonlinear systems with small nonlinearities only.
In [17] for the special case of feedback linearizable systems,
the tube is parametrized as a hyper cube and a boundary
layer controller is used as an auxiliary controller. In [18]
incrementally stable systems are considered and the sublevel
sets of the incremental Lyapunov function are used to char-
acterize the tube and thus tighten the constraints. Similarly,
in [19] a control contraction metric is determined offline by
solving a sum-of-squares problem, which is used to tighten
the constraints, compare also [20]. In [21], a tube is computed
online within the MPC optimization problem based on Min-
Max differential inequalities.

Similar problems and methods can also be found in ro-
bust trajectory optimization in robotics. For example, in [22]
complex movements are decomposed into simple maneuvers
and for each maneuver a funnel/tube is computed offline.
In [23], the time-varying (iterative) LQR is used to tighten
the constraints, which is similar to [21].
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In general, by using more sophisticated concepts, robust
MPC methods can handle more general nonlinear systems and
reduce the conservatism. However, this comes at the cost of
an increased offline and/or online computational complexity. In
this paper, we consider the quite general class of nonlinear sys-
tems which are incrementally stabilizable [24]. Instead of di-
rectly using the complex (and possibly unknown) incremental
Lyapunov function in the design of the MPC scheme, we only
use scalar bounds that characterize the stabilizability property.
This enables us to use a simple and efficient implementation
to robustly stabilize complex nonlinear systems.

In addition to the challenges related to nonlinear system
dynamics, the consideration of general state and input depen-
dent disturbance descriptions instead of additive constantly
bounded disturbances is a crucial problem. In the special
case of linear systems subject to parametric uncertainty, a
polytopic tube can be constructed online [25], [26], [27],
[2, Chap. 5]. For nonlinear systems, only very few results
allowing for general state and input dependent uncertainty
descriptions are available. In [28] the method in [14] is
extended to state dependent disturbances by constructing a
simple tube online. Similar to [14], the procedure is easy
to apply but suffers from a prohibitive conservatism. As a
complementary result, in [29] an offline constraint tightening
based on backward reachable sets is proposed. More advanced
methods are based on scenario or stochastic formulations [5],
[6], [7], [8], compare also [30]. These approaches typically
suffer from a significant increase in the online computational
demand and yield probabilistic guarantees, if any.

Contribution

In this work, we present a nonlinear robust MPC frame-
work for incrementally (exponentially) stabilizable nonlinear
systems subject to general nonlinear state and input depen-
dent disturbances/uncertainty. The paper contains two main
contributions. First, we present a simple constraint tightening
for nonlinear robust MPC based on incremental stabilizability.
Second, we provide a framework to consider general nonlinear
state and input dependent disturbances in robust MPC by
including the predicted size of the tube as scalar variables
in the online MPC optimization problem.

Most of the existing design procedures for nonlinear robust
MPC [16], [18], [19] compute a complex nonlinear incre-
mental Lyapunov function and a corresponding incrementally
stabilizing feedback offline and then use them to design
the online optimization problem. In contrast, we only use
the fact that the system is incrementally stabilizable, i.e.,
the existence of a possibly quite complex (or analytically
unknown) nonlinear incremental Lyapunov function with a
corresponding feedback, and then design the robust MPC
based on suitable scalar bounds on these functions, which can
be obtained numerically. This enables a simple and efficient
implementation.

Furthermore, we design a general nonlinear state and input
dependent function that characterizes uncertainty for different
operating points. Based on this description, we augment the
nonlinear robust MPC scheme such that the size of the tube

and correspondingly the constraint tightening are computed
online (depending on the nominal predicted trajectory). The re-
sulting nonlinear robust MPC scheme ensures robust recursive
feasibility and robust constraint satisfaction, while avoiding
highly uncertain areas, thus acting cautiously.

Within the proposed framework, the offline computation
only requires simple scalar functions/operations, and the online
computational demand is only moderately increased com-
pared to a nominal MPC scheme, similar to [14], [28]. We
demonstrate the applicability of the proposed approach and
compare it to competing approaches [14], [21], [28] in terms of
computational complexity and conservatism with a nonlinear
example.

The paper is structured as follows: Section II discusses the
problem setup. Section III presents the proposed scheme and
the theoretical analysis. Section IV discusses the important
special cases of constantly bounded additive disturbances and
linear parameter varying (LPV) systems. Section V provides a
numerical example to demonstrate the applicability of the pro-
posed approach and compare it to competing approaches [14],
[21], [28] in terms of computational complexity and conser-
vatism. Section VI concludes the paper. In the Appendix, the
results are extended to continuous-time dynamics (App. A)
and more general nonlinear constraints (App. B). A prelim-
inary version for the special case of additive disturbances
(Sec. IV-A) can be found in the conference proceedings [31].

Notation

The quadratic norm with respect to a positive definite matrix
Q = Q> is denoted by ‖x‖2Q = x>Qx and the minimal
and maximal eigenvalue of Q are denoted by λmin(Q) and
λmax(Q), respectively. The positive real numbers are R≥0 =
{r ∈ R|r ≥ 0}. The vertices of a polytopic set Θ are denoted
by θi ∈ Vert(Θ). By K we denote the class of functions α :
R≥0 → R≥0, which are continuous, strictly increasing and
satisfy α(0) = 0. By K∞ we denote the class of functions
α ∈ K, which are also unbounded.

II. PROBLEM SETUP: INCREMENTAL STABILIZABILITY
AND UNCERTAINTY DESCRIPTION

This section introduces the assumptions on the nonlinear
system dynamics and the uncertainty. The problem setup is
introduced in Section II-A. Section II-B discusses the system
property incremental stabilizability, which is key for the
proposed simple implementation. An efficient description of
the disturbance bound is introduced in Section II-C.

A. Setup

We consider a nonlinear perturbed discrete-time system

xt+1 = fw(xt, ut, dt) = f(xt, ut) + dw(xt, ut, dt), (1)

with state x ∈ Rn, control input u ∈ Rm, disturbance d ∈
D ⊂ Rq , time t ∈ N, perturbed system fw, nominal model f
and model mismatch dw. We impose point-wise in time state
and input constraints

(xt, ut) ∈ Z, t ≥ 0, (2)
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with some compact nonlinear constraint set

Z = {(x, u) ∈ Rn+m| gj(x, u) ≤ 0, j = 1, . . . , p} ⊂ Rn+m.

Assumption 1. For each (x, u) ∈ Z , there exists a compact
set W(x, u) ⊂ Rn, such that the model mismatch dw satisfies
dw(x, u, d) ∈ W(x, u) for all d ∈ D.

Such a description includes additive disturbances, multi-
plicative disturbances, more general nonlinear disturbances,
and/or unmodeled nonlinearities1. We consider the problem of
stabilizing the origin and assume that 0 ∈ int(Z), f(0, 0) = 0.
The open-loop cost of a predicted state and input sequence
x·|t ∈ Rn×N+1, u·|t ∈ Rm×N is defined as

JN (x·|t, u·|t) =

N−1∑
k=0

`(xk|t, uk|t) + Vf (xN |t),

with some positive definite stage cost ` and terminal cost Vf .
One conceptual framework to address this robust constrained
stabilization problem is min−max MPC [4]:

min
u·|t

max
w·|t

JN (x·|t, u·|t) (3a)

s.t. x0|t = xt, xk+1|t = f(xk|t, uk|t) + wk|t, (3b)
(xk|t, uk|t) ∈ Z, xN |t ∈ Xf , (3c)
∀wk|t ∈ W(xk|t, uk|t), k = 0, . . . , N − 1.

The result of this optimization problem is a control input2

u∗·|t, such that the constraints are satisfied for the worst-case
disturbance realization w∗·|t. This approach is conceptually
very appealing but suffers from a prohibitive computational
demand. In this paper, we present a framework for tube-based
nonlinear robust MPC that shares many of the theoretical
properties with [4], with an online computational demand
comparable to a nominal MPC scheme.

B. Local Incremental stabilizability

In order to provide theoretical guarantees for robust sta-
bilization, we assume that the nominal system is locally
incrementally stabilizable.

Assumption 2. [24], [33, Ass. 1] There exist a control law
κ : Rn × Z → Rm, an incremental Lyapunov function
Vδ : Rn×Z → R≥0, which is continuous in the first argument
and satisfies Vδ(z, z, v) = 0 for all (z, v) ∈ Z , and positive
constants cδ,l, cδ,u, δloc, κmax> 0, ρ ∈ (0, 1), such that the
following properties hold for all (x, z, v) ∈ Rn × Z with
Vδ(x, z, v) ≤ δloc, and all (x+, z+, v+) ∈ Rn ×Z:

cδ,l‖x− z‖2 ≤ Vδ(x, z, v) ≤cδ,u‖x− z‖2, (4a)

‖κ(x, z, v)− v‖2 ≤κmaxVδ(x, z, v), (4b)

Vδ(x
+, z+, v+) ≤ρ2Vδ(x, z, v), (4c)

with x+ = f(x, κ(x, z, v)), z+ = f(z, v).

1The consideration of dynamic uncertainty [32] within the proposed frame-
work is part of future research and currently an open problem.

2Typically, min−max MPC schemes [4] optimize over feedback policies
uk|t = Πk(xk|t) instead of open-loop control inputs uk|t.

Remark 1. It is possible to relax Assumption 2, such that
for any feasible sequence zt+1 = f(zt, vt), (zt, vt) ∈ Z ,
t ≥ 0, there exist a time-varying incremental Lyapunov
function Vδ,t(x, z) and a time-varying feedback κt(x, z, v),
that (uniformly) satisfy the conditions (4). In this paper,
we consider the time-invariant description in Assumption 2
for notational simplicity. This system property is a natural
extension of previous works on incremental stability and cor-
responding incremental Lyapunov functions [24], [33, Ass. 1],
[34] and contains various stabilizability properties considered
in existing robust MPC schemes as special cases. In [21]
Vδ,t(x, z) = ‖x − z‖2Pt , κt(x, z, v) = v + Kt(x − z) is
considered, with Kt, Pt computed online, similar to the
time-varying (iterative) LQR in [23]. In [19] Vδ(x, z) and
κ(x, z, v) = v + Kz(x − z) are determined offline using
control contraction metrics [35]. Similarly, in [24] Vδ(x, z) =
‖x − z‖2Pz and κ(x, z, v) = v + Kz(x − z) are computed
offline using quasi-LPV methods. The special case of constant
matrices P,K is considered in [16], [36]. In [18] the system
is assumed to be incrementally stable with κ(x, z, v) = v.

The following assumptions capture the considered condi-
tions on the stage cost ` and the constraint set Z .

Assumption 3. The stage cost ` : Z → R≥0 satisfies

`(r) ≥ α`(‖r‖), (5a)

`(r̃)− `(r) ≤ αc(‖r̃ − r‖), ∀ r ∈ Z, r̃ ∈ Rn+m, (5b)

with α`, αc ∈ K∞. Furthermore, for any ρ ∈ (0, 1), we have3

αc,ρ(c) :=
∑∞
k=0 αc(ρ

kc) ∈ K∞.

Assumption 4. There exist local Lipschitz constants Lj , such
that

gj(r̃)− gj(r) ≤ Lj‖r − r̃‖, j = 1, . . . , p, (6)

holds for all r ∈ Z and all r̃ ∈ Rn+m with ‖r − r̃‖2 ≤ δloc
cδ,l

.

Assumptions 3–4 are, for example, satisfied with a quadratic
positive definite stage cost ` and a convex polytopic constraint
set Z . More general stage costs are discussed in Remark 5
(Sec. III-C). In Appendix B, we discuss the extension to more
general constraints, which do not satisfy Assumption 4.

The following proposition allows us to compute scalar
bounds that relate the level set of the incremental Lyapunov
function Vδ to the nonlinear constraint set Z .

Proposition 1. Suppose that Assumptions 2, 3 and 4 hold, then
there exist constants cj ≥ 0, j = 1, . . . , p, and a function αu ∈
K∞ such that the following inequalities hold for all (x, z, v) ∈
Rn ×Z with Vδ(x, z, v) ≤ c2 and any c ∈ [0,

√
δloc]:

`(x, κ(x, z, v))− `(z, v) ≤αu(c), (7)
gj(x, κ(x, z, v))− gj(z, v) ≤cj · c. (8)

3For polynomials αc(c) =
∑∞
j=1 ajc

j , aj ≥ 0, with ak > 0 for some
k ∈ N, this condition is satisfied with αc,ρ(c) :=

∑∞
k=0

∑∞
j=1 aj(cρ

k)j =∑∞
j=1 ajc

j/(1− ρj).



4

Proof. Based on (4a) and (4b), we have

‖x− z‖2 + ‖κ(x, z, v)− v‖2 ≤
(

1

cδ,l
+ κmax

)
c2. (9)

This implies (7) with

`(x, κ(x, z, v))− `(z, v)
(5b)
≤ αc

(
c
√

(1/cδ,l + κmax)

)
=: αu(c).

Similarly, (8) is satisfied with

gj(x, κ(x, z, v))− gj(z, v)
(6)
≤Lj

√
‖x− z‖2 + ‖κ(x, z, v)− v‖2

(9)
≤Ljc ·

√
1/cδ,l + κmax =: cj · c.

One of the most important features of the proposed robust
MPC scheme is that the explicit description and/or com-
putation of the general nonlinear functions Vδ, κ is not
required for the implementation. Thus, this scheme can also
be applied if an analytic description and/or verification of
this system property are too complex. Indeed, only the scalar
variables cj , cδ,l, cδ,u, δloc, and ρ need to be computed. This
simple description also ensures that the online computational
demand does not increase significantly, which is one of the
major advantages of the proposed approach. We are currently
investigating numerical approaches to directly compute these
scalar values without using an explicit analytical description
of Vδ . In addition, these scalar variables can be easily tuned
to provide safety, compare the numerical example in [37].

C. Efficient disturbance description
One of the difficulties of considering general state and input

dependent disturbances is that the future size of the disturbance
depends on the predicted state and input sequence (x·|t, u·|t).

A safe and reliable (robust) MPC implementation requires
that a valid upper bound on the magnitude of the disturbance at
the predicted (uncertain) state xk|t can be efficiently evaluated.
To facilitate such an efficient evaluation we consider the
following assumption.

Assumption 5. Consider the uncertainty set W(x, u), the
incrementally stabilizing feedback κ and incremental Lya-
punov function Vδ from Assumptions 1 and 2. There exists
a function w̃δ : Z × R≥0 → R≥0, such that for any point
(x, z, v) ∈ Rn × Z with Vδ(x, z, v) ≤ c2, any c ∈ [0,

√
δloc],

any (z+, v+) ∈ Z with z+ = f(z, v), and any disturbance
dw ∈ W(x, κ(x, z, v)), we have

Vδ(z
+ + dw, z

+, v+) ≤ w̃2
δ(z, v, c). (10a)

Furthermore, w̃δ satisfies the following monotonicity property:
For any point (x, z, v) ∈ Rn × Z such that Vδ(x, z, v) ≤
(c1 − c2)2 with constants 0 ≤ c2 ≤ c1 ≤

√
δloc, we have

w̃δ(x, κ(x, z, v), c2) ≤ w̃δ(z, v, c1). (10b)

Note that by using the set W(x, u) in Assumption 1, we
can construct a function that upper bounds the uncertainty

at any point (x, u) ∈ Z . In a similar fashion, (10a) ensures
that w̃δ(z, v, c) is an upper bound to the uncertainty that
can occur in the neighbourhood of a point (z, v) ∈ Z ,
where the neighbourhood is given by Vδ(x, z, v) ≤ c2. The
monotonicity property (10b) is illustrated in Fig. 1, where we
have that the uncertainty bound based on the set S1 needs
to be larger than the uncertainty contained in the set S2.
This property is crucial to evaluate bounds on the uncertainty
for the online optimization, which remain valid in closed-
loop operation. We refer to this as a monotonicity property
since in the quadratic case S2 ⊆ S1, and thus the measure-
like function w̃δ should satisfy (10b). Details on the offline
computation/construction of the function w̃δ can be found in
Section III-D (Prop. 2–3, Corollary 1), the numerical example
(Sec. V) and in Section IV-B (Prop. 5) for the special case of
LPV systems.

Fig. 1. Illustration: Monotonicity property of w̃δ for quadratic functions Vδ .

III. ROBUST MPC FRAMEWORK

This section contains the proposed robust MPC framework
for nonlinear uncertain systems. The proposed framework is
presented in Section III-A. The theoretical analysis, including
assumptions on the terminal ingredients, is detailed in Sec-
tion III-B. Section III-C discusses the complexity and conser-
vatism compared to existing robust MPC methods. Additional
details on the offline computation are given in Section III-D
and the overall offline and online procedure is summarized.

A. Proposed nonlinear robust MPC scheme

In the following, we present the proposed robust MPC
scheme. The basic idea of the proposed approach is to online
predict a tube size s ∈ R≥0, which (indirectly) characterizes
sublevel sets of the incremental Lyapunov function Vδ (Ass. 2).
The tube size s is then used to tighten the state and input
constraints in order to ensure robust constraint satisfaction.
The proposed nonlinear robust MPC scheme is based on the
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following optimization problem:

VN (xt) = min
u·|t,w·|t

JN (x·|t, u·|t) (11a)

s.t. x0|t = xt, s0|t = 0, (11b)
xk+1|t = f(xk|t, uk|t), (11c)
sk+1|t = ρsk|t + wk|t, (11d)
wk|t ≥ w̃δ(xk|t, uk|t, sk|t), (11e)
gj(xk|t, uk|t) + cjsk|t ≤ 0, (11f)
sk|t ≤ s, wk|t ≤ w, (11g)
(xN |t, sN |t) ∈ Xf , (11h)
k = 0, . . . , N − 1, j = 1, . . . , p.

The solution of (11) are the optimal trajectories for the state
x∗·|t, the input u∗·|t, the disturbance bound w∗·|t, the tube size s∗·|t
and the value function VN . The resulting closed-loop system
is given by

xt+1 = fw(xt, ut, dt), ut = u∗0|t. (12)

The terminal cost Vf , the terminal set Xf and the scalar
bounds s, w will be introduced in Section III-B. Compared
to a nominal MPC scheme, the state x is augmented with
the scalar variable s, which captures the size of the tube,
while the input u is augmented with the scalar variable w,
which captures the magnitude of the uncertainty. Similarly
to the state x and input u, the additional state s and input
w are subject to nonlinear dynamic equations (11d), (11e),
constraints (11f), (11g) and terminal condition (11h). Corre-
spondingly, the online computational demand of solving (11)
is equivalent to a nominal MPC scheme with an augmented
state (x, s) ∈ Rn+1, augmented input vector (u,w) ∈ Rm+1

and additional nonlinear inequality constraints (11e) on the
decision variable w.

The numerical example (Sec. V) also shows that the pro-
posed robustification (based on the online computed tube size
s and the constraint tightening) only moderately increases the
online computational demand. This is in contrast to much of
the existing approaches for the considered general setup, such
as [5], [6], [8], [21], [30] which often increase the online
computational demand by orders of magnitude.

The scalar w represents a sufficient bound on the uncer-
tainty that can occur in closed-loop operation, such that we
can guarantee robust recursive feasibility of the terminal set
constraint. Note that we do not assume any upper bound on the
model mismatch dw in Z , instead, the closed-loop system will
automatically avoid regions with uncertainty exceeding w and,
thus, act cautiously. Thus, even in the absence of state/input
constraints, the robust MPC scheme avoids regions with large
uncertainty to ensure robust closed-loop properties, which can
be very advantageous from a practical point of view. Typi-
cally, such a behaviour is only present in scenario/stochastic
MPC [5], [6], [7], [8] by minimizing the expected stage cost
`, compare Remark 5. Note that due to the general nonlinear
dependence of the uncertainty w on the state and input, the
tube size sk|t is not necessarily monotonically increasing over
k, meaning that we could potentially have sk+1|t < sk|t.

Fig. 2. Illustration: Optimal trajectory x∗·|t, candidate trajectory x·|t+1, and
corresponding tube size s∗·|t and s·|t+1, respectively.

B. Theoretical analysis

In the following, we detail the theoretical analysis and
provide the technical conditions on the terminal ingredients
(terminal cost Vf and terminal set Xf ). The minimal bound
on the uncertainty wmin and the maximal4 tube size s are

wmin := inf
(x,u)∈Z

w̃δ(x, u, 0), s :=
√
δloc. (13)

Terminal ingredients: The following assumption captures
the desired properties of the terminal ingredients.

Assumption 6. There exist a terminal controller kf : Rn →
Rm, a terminal cost function Vf : Rn → R≥0, a terminal set
Xf ⊂ Rn+1, and a constant w ∈ R≥0 such that the following
properties hold for all (x, s) ∈ Xf , all w ∈ [wmin, w], all s+ ∈
[0, ρs− ρNw + w̃δ(x, kf (x), s)], and all dw ∈ Rn, such that
Vδ(x

+ + dw, x
+, kf (x+)) ≤ ρ2Nw2 with x+ = f(x, kf (x)):

Vf (x+) ≤Vf (x)− `(x, kf (x)), (14a)

(x+ + dw, s
+) ∈Xf , (14b)

w̃δ(x, kf (x), s) ≤w, (14c)
gj(x, kf (x)) + cjs ≤0, j = 1, . . . p, (14d)

s ≤s. (14e)

Furthermore, the terminal cost Vf is continuous on the com-
pact set Xf,x := {x| ∃s ∈ [0, s], (x, s) ∈ Xf}, i.e., there
exists a function αf ∈ K∞ such that

Vf (z) ≤ Vf (x) + αf (‖x− z‖), ∀x, z ∈ Xf,x. (15)

This assumption requires a suitable terminal cost Vf , a
controller kf , a set Xf and a scalar w. The conditions on
Vf , kf , Xf are similar to standard conditions in (robust) MPC
with a terminal set for the augmented state (x, s) ∈ Rn+1,
compare [38]. The terminal set needs to satisfy the tight-
ened state and input constraints (14d). In addition, a robust
positive invariance condition of the terminal set needs to
be verified (14b). Details on the constructive satisfaction of
Assumption 6 based on standard terminal ingredients can be
found in Section III-D, Prop. 4.

4The bound s ≤
√
δloc can be relaxed by introducing two constants

δ1, δ2 > 0, such that the contraction (4c) holds for all Vδ(x, z, v) ≤ δ21 ,
while Assumption 5 holds for all c2 ≤ c1 ≤ δ2, c1 − c2 ≤ δ1. In this case
it suffices that s ≤ δ2 and w ≤ δ1.
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The following theorem establishes the closed-loop proper-
ties of the proposed nonlinear robust MPC scheme.

Theorem 1. Let Assumptions 1–6 hold, and suppose that (11)
is feasible at t = 0. Then (11) is recursively feasible, the
constraints (2) are satisfied and the origin is practically
asymptotically stable for the resulting closed-loop system (12).

Proof. The basic idea is to use the control law κ from
Assumption 2 to stabilize the previous optimal solution of (11)
and thus bound the cost increase and ensure robust recursive
feasibility. This is illustrated in Figure 2, where we see that the
tube around the candidate solution x·|t+1 is contained inside
the tube around the previous optimal solution x∗·|t. We first
construct the candidate solution and establish bounds on the
size of the tube s and the disturbance w. Then we show that
the candidate solution satisfies the tightened state and input
constraints (11f) and the posed constraints on the disturbance
bound w and the tube size s (11g). Constraint satisfaction,
i.e. (xt, ut) ∈ Z ∀t ≥ 0, follows directly from (11f) with
k = 0. Then, we establish recursive feasibility of the posed
terminal set constraint Xf (11h). Finally, we establish practical
asymptotic stability.
Part I. Candidate solution: For convenience, define

u∗N |t =kf (x∗N |t), u
∗
N+1|t = kf (x∗N+1|t),

x∗N+1|t =f(x∗N |t, u
∗
N |t), w

∗
N |t = w̃δ(x

∗
N |t, u

∗
N |t, s

∗
N |t).

Consider the candidate solution

x0|t+1 =xt+1 = fw(x∗0|t, u
∗
0|t, dt), (16)

uk|t+1 =κ(xk|t+1, x
∗
k+1|t, u

∗
k+1|t),

xk+1|t+1 =f(xk|t+1, uk|t+1),

s0|t+1 =0,

sk+1|t+1 =ρsk|t+1 + wk|t+1,

wk|t+1 =w̃δ(xk|t+1, uk|t+1, sk|t+1),

with k = 0, . . . , N−1. Assumption 5, (10a) with c = 0 yields√
Vδ(xt+1, x∗1|t, u

∗
1|t)

(10a)
≤ w̃δ(x

∗
0|t, u

∗
0|t, 0) ≤ w∗0|t = s∗1|t

(11g)
≤ s

(13)
≤
√
δloc.

Using the contractivity (4c) (Ass. 2) recursively, we get

Vδ(xk|t+1, x
∗
k+1|t, u

∗
k+1|t) (17)

≤ ρ2k[w∗0|t]
2 ≤ δloc, k = 0, . . . , N.

Part II. Tube dynamics: In the following we show that the
following inequalities hold for k = 0, . . . , N−1 by induction:

sk|t+1 ≤s∗k+1|t − ρ
kw∗0|t, (18)

wk|t+1 ≤w∗k+1|t. (19)

We first show that (18) and (19) hold for k = 0, and then we
proceed by showing that they also hold for k + 1.

1) Induction start: k = 0: Inequality (18) is satisfied with

s0|t+1
(11b)
= 0

(11d)
= s∗1|t − w

∗
0|t.

Consider c2 = s0|t+1 = 0 ≤ c1 = s∗1|t = w∗0|t ≤ s ≤

√
δloc, and√

Vδ(x0|t+1, x
∗
1|t, u

∗
1|t) ≤ w

∗
0|t = c1 − c2.

Thus, using Assumption 5, (10b) implies that the distur-
bance w satisfies

w0|t+1 =w̃δ(x0|t+1, u0|t+1, s0|t+1︸ ︷︷ ︸
=0

)

(10b)
≤ w̃δ(x

∗
1|t, u

∗
1|t, s

∗
1|t)

(11e)
≤ w∗1|t.

2) Induction step k+ 1: Suppose that (18) and (19) hold for
some k ≥ 0. Based on (11d), the tube size s satisfies

sk+1|t+1
(11d)
= ρsk|t+1 + wk|t+1

(19)
≤ ρsk|t+1 + w∗k+1|t

(18)
≤ ρs∗k+1|t + w∗k+1|t − ρ

k+1w∗0|t
(11d)
= s∗k+2|t − ρ

k+1w∗0|t.

Consider c2 = sk+1|t+1

(18)
≤ c1 = s∗k+2|t

(11g)
≤ s

(13)
≤√

δloc. Thus, by using (10b), the disturbance w satisfies
wk+1|t+1 ≤ w∗k+2|t.

Part III. State and input constraint satisfaction:
For k = 0, . . . , N − 2, we have

gj(xk|t+1, uk|t+1) + cjsk|t+1

(8)(17)
≤ gj(x

∗
k+1|t, u

∗
k+1|t) + ρkcjw

∗
0|t + cjsk|t+1

(18)
≤ gj(x∗k+1|t, u

∗
k+1|t) + cjs

∗
k+1|t

(11f)
≤ 0.

The terminal condition (11h) ensures constraint satisfaction
for k = N − 1 with

gj(xN−1|t+1, uN−1|t+1) + cjsN−1|t+1

(8)(17)(18)
≤ gj(x

∗
N |t, u

∗
N |t) + cjs

∗
N |t

(14d)
≤ 0.

Part IV. Tube bounds (11g): Inequalities (18) and (19) ensure
that (11g) hold for k = 0, . . . , N − 2. For k = N − 1,
(x∗N |t, s

∗
N |t) ∈ Xf implies

sN−1|t+1

(18)
≤ s∗N |t

(14e)
≤ s,

wN−1|t+1

(19)
≤ w∗N |t = w̃δ(x

∗
N |t, u

∗
N |t, s

∗
N |t)

(14c)
≤ w. (20)

Part V. Terminal constraint satisfaction (11h): The terminal
state and terminal tube size satisfy√
Vδ(xN |t+1, x

∗
N+1|t, u

∗
N+1|t)

(17)
≤ ρNw∗0|t,

sN |t+1
(11d)
= ρsN−1|t+1 + wN−1|t+1

(18),(20)
≤ ρs∗N |t − ρ

Nw∗0|t + w∗N |t.

Thus Ass. 6, (14b) ensures (xN |t+1, sN |t+1) ∈ Xf with dw =
x∗N+1|t − xN |t+1 and w∗0|t ∈ [wmin, w].
Part VI. Practical stability: For k = 0, . . . , N − 1 we have:

`(xk|t+1, uk|t+1)− `(x∗k+1|t, u
∗
k+1|t)

(7)(17)
≤ αu(ρkw∗0|t) ≤ αu(ρkw).

Similar to [31, Prop. 5], continuity and exponential summa-
bility of the stage cost ` (Ass. 3) in combination with the
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terminal cost (Ass. 6) implies

JN (xt+1, u·|t+1)− VN (xt) + `(xt, ut)

≤αf (ρNw/
√
cδ,l) +

N−1∑
k=0

αu(ρkw)

≤αf (w/
√
cδ,l) + αc,ρ

(
w
√

1/cδ,l + κmax

)
=: αw(w),

with αw ∈ K∞. Feasibility and standard arguments [1] imply

α`(‖xt‖) ≤ VN (xt) ≤αv(‖xt‖), αv ∈ K∞,
VN (xt+1)− VN (xt) ≤− α`(‖xt‖) + αw(w).

Thus, the closed-loop system is practically asymptotically
stable, compare [39, Prop. 11].

The online constructed tube size s (11d) in combination
with the constraint tightening (11f) ensures that the optimiza-
tion problem (11) is recursively feasible and the constraints (2)
are satisfied. The region of attraction and the bound on the
maximal uncertainty w (compare Proposition 4 below) im-
prove if a larger prediction horizon N is used. We expect that
similar theoretical properties can also be guaranteed without
terminal ingredients by using a sufficiently large prediction
horizon N and arguments from [3], [31].

C. Discussion

In the following, we discuss the proposed robust MPC
framework in comparison to existing robust MPC approaches
(Remark 2–4) and elaborate on possible extensions and appli-
cations of the proposed robust MPC framework (Remark 5–6).

Remark 2. Most of the existing (nonlinear) robust
MPC schemes consider additive constantly bounded distur-
bances [16], [18], [19]. The proposed framework with the
predicted tube size s·|t and the efficient disturbance description
w̃δ(x, u, s) offers a simple means to extend these methods to
consider more general disturbance descriptions.

Remark 3. A competing (possibly less conservative) method
to deal with general nonlinear robust MPC is given in [21].
This approach includes matrices Qx ∈ Rn×n, K ∈ Rm×n
in the online optimization that characterize a time-varying
ellipsoidal tube Vδ,t and linear time-varying feedback κt
(c.f. Remark 1), compare also [40]. The resulting online
computational demand is comparable to a nominal MPC
scheme with (n + n2)/2 additional state variables Qx and
m·n additional input/decision variables K, which significantly
increases the computational demand for high dimensional sys-
tems, compare [40]. In contrast, the computational demand of
the proposed scheme is comparable to a nominal MPC scheme
with n + 1 states (x, s) and m + 1 input/decision variables
(u,w) and thus allows for an efficient implementation to
higher dimensional systems, compare the numerical example
in Section V. Thus, the proposed method can be interpreted
as a simpler (but also more conservative) alternative to [21].

Furthermore, there exists a strong parallel between the
tube construction in [21] with the predicted matrix Qx, and
uncertainty propagation in stochastic MPC approaches [8]

with the covariance matrix Σx ∈ Rn×n. Based on these
similarities, we expect that it is possible to devise a stochastic
version of the proposed method, as a computationally efficient
counterpart to [8] with probabilistic guarantees.

Remark 4. The robust MPC method in [14] based on a
Lipschitz bound L has previously been extended in [28] to
state dependent uncertainties of the form ŵ = a + b‖x‖. In
particular, the method and results in [28] are contained as a
special case in our framework with Vδ(x, z, v) = ‖x − z‖2,
κ(x, z, v) = v and ρ = L. Correspondingly, the design
procedure and online complexity are equivalent. The main
difference is that we use the incremental stabilizability bound
ρ instead of the Lipschitz bound L to construct the tube.
Thus, the resulting framework is typically significantly less
conservative, compare the discussion in [31], the numerical
comparison in [41] and the numerical example in Section V.

Remark 5. The presented approach only minimizes the nom-
inal predicted cost `(x, u) in (11), instead of considering the
uncertainty of the prediction in the minimized cost. A simple
and intuitive way to account for the uncertainty is to consider
the following worst case (min−max) stage cost

`w(z, v, s) := `(z, v) + αu(s)
(7)
≥ max

x:Vδ(x,z,v)≤s2
`(x, κ(x, z, v)).

This modified stage cost incentivizes cautious operation. In
case of additive disturbances (compare Section IV-A), this
modification does not change the optimal open-loop trajectory.
In [21], [26] an alternative cost function based on the gener-
alized inertia (which uses matrix variables) is considered.

Such explicit considerations of the predicted uncertainty in
the cost function become even more relevant in the context
of economic MPC [42]. A more detailed discussion on such
modified stage costs based on min-max, stochastic and average
cost can be found in [43], [44], [45]. The stability analysis
with the modified cost `w and the extension to such economic
consideration are, however, beyond the scope of this paper.

Remark 6. The main focus of the presented nonlinear robust
MPC framework is to ensure constraint satisfaction and re-
cursive feasibility despite disturbances/uncertainty. We expect
that the presented ideas for robust MPC can also be used
to extend existing output feedback MPC schemes [46], [47]
and distributed/hierarchical MPC schemes [48] to nonlinear
systems subject to state and input dependent uncertainty, which
is part of future work.

D. Offline and Online Implementation

In this section, we discuss in detail how to construct the
function w̃δ (Ass. 5), the terminal ingredients (Ass. 6), and
summarize the overall algorithm.

1) Nonlinear uncertainty bound: In the following we dis-
cuss some approaches to define the function w̃δ (Ass. 5) for
practical applications. An analytical description of W can
often be obtained based on prior knowledge of parametric
uncertainty and bounds on the additive disturbance, compare
the numerical examples in Sec. V. Alternatively, W can be
(directly) estimated using experiments. A general function w̃δ



8

that satisfies the posed conditions (Ass. 5) can be computed
using an appropriate parametrization and the following con-
ceptual optimization problem

min
w̃δ

∫ s

c=0

∫
r=(x,u)∈Z

w̃δ(x, u, c) dr dc

s.t. (10a), (10b) hold ∀ (x, z, v) ∈ Rn ×Z, Vδ(x, z, v) ≤ s2.

The following proposition provides a simple way to design a
function w̃δ , based on continuity conditions.

Proposition 2. Let Assumptions 1 and 2 hold. There exists
a function w̃ : Z → R≥0, such that for all (z, v) ∈ Z ,
(z+, v+) ∈ Z , (x, u) ∈ Rn+m with z+ = f(z, v), dw ∈
W(x, u), the following bound is satisfied

Vδ(z
+ + dw, z

+, v+) ≤ w̃2(x, u). (21a)

Assume that the following continuity condition holds for all
(x, z, v) ∈ Rn×Z with Vδ(x, z, v) ≤ c2 and any c ∈ [0,

√
δloc]

w̃(x, κ(x, z, v))− w̃(z, v) ≤α̃w(c), (21b)

with a superadditive5 function α̃w ∈ K∞. Then the function

w̃δ(z, v, c) := w̃(z, v) + α̃w(c),

satisfies the properties in Assumption 5.

Proof. Inequality (4a) ensures that condition (21a) is sat-
isfied by w̃(z, v) =

√
cδ,uŵ(z, v), with ŵ(z, v) :=

maxdw∈W(z,v) ‖dw‖. Given Vδ(x, z, v) ≤ c2 and dw ∈
W(x, κ(x, z, v)), we have√

Vδ(z+ + dw, z+, v+)
(21a)
≤ w̃(x, κ(x, z, v))

(21b)
≤ w̃(z, v) + α̃w(c) = w̃δ(z, v, c),

which implies (10a). Similarly, for any 0 ≤ c2 ≤ c1 ≤
√
δloc,

x ∈ Rn, with Vδ(x, z, v) ≤ (c1 − c2)2 we have

w̃δ(x, κ(x, z, v), c2) = w̃(x, κ(x, z, v)) + α̃w(c2)
(21b)
≤ w̃(z, v) + α̃w(c1 − c2) + α̃w(c2)≤w̃(z, v) + α̃w(c1),

which implies (10b).

Corollary 1. Let Assumptions 1 and 2 hold. Suppose there
exists a Lipschitz continuous function ŵ(x, u) satisfying
ŵ(x, u) ≥ ‖dw(x, u, d)‖ for all (x, u, d) ∈ Z × D. Then

w̃δ(z, v, c) :=
√
cδ,uŵ(z, v) + cL

√
cδ,u

√
1/cδ,l + κmax,

satisfies Assumption 5, where L is the Lipschitz constant of ŵ.

Proof. The statement follows from Prop. 2 using (9).

For the special case of quadratic incremental Lyapunov
functions, the following proposition provides a direct method
to compute w̃δ .

5Any function α̃w(c) =
∑∞
j=1 ajc

j with aj ≥ 0 is superadditive, e.g.
α̃w linear or quadratic.

Proposition 3. Let Assumption 1 hold. Suppose Assumption 2
holds with6 Vδ(x, z, v) = ‖x− z‖2P and κ(x, z, v) = κx(x)−
κx(z) + v. Then Assumption 5 holds with

w̃δ(z, v, c) := sup
{x| ‖x−z‖P≤c}

sup
dw∈W(x,κ(x,z,v))

‖dw‖P . (22)

Proof. Condition (10a) is trivially satisfied. Note that the
assumed structure of κ implies

κ(x̃, x, κ(x, z, v)) =κx(x̃)− κx(x) + κ(x, z, v)

=κx(x̃)− κx(x) + κx(x)− κx(z) + v

=κx(x̃)− κx(z) + v = κ(x̃, z, v). (23)

Using the quadratic nature of Vδ (triangular inequality) and
equation (23), the following equivalence holds

sup
{x|‖x−z‖P≤c1−c2}

w̃δ(x, κ(x, z, v), c2)

(22)
= sup
{x|‖x−z‖P≤c1−c2}

sup
{x̃|‖x̃−x‖P≤c2}

sup
dw∈W(x̃,κ(x̃,x,κ(x,z,v)))

‖dw‖P

(23)
= sup
{x|‖x−z‖P≤c1−c2}

sup
{x̃|‖x̃−x‖P≤c2}

sup
dw∈W(x̃,κ(x̃,z,v))

‖dw‖P

(22)
= sup
{x̃|‖x̃−z‖P≤c1}

sup
dw∈W(x̃,κ(x̃,z,v))

‖dw‖P = w̃δ(z, v, c1),

compare Fig. 1 for an illustration. This condition implies (10b)
and thus satisfaction of Assumption 5.

The method in Proposition 3 is not applicable to arbitrary
nonlinear incremental Lyapunov functions Vδ and feedbacks
κ, since the monotonicity property (10b) does not necessarily
hold.

Propositions 1–2 (and Corollary 1) provide simple proce-
dures to compute w̃δ and cj , which only use scalar bounds
describing the incremental stabilizability property (Ass. 2)
and do not explicitly use the incremental Lyapunov function
Vδ . In case of quadratic incremental Lyapunov functions Vδ ,
Proposition 3 provides a procedure that uses the shape of
Vδ and W to compute the least conservative function w̃δ
satisfying Assumption 5. Furthermore, in Section IV-B we
consider polytopic incremental Lyapunov functions Vδ for
LPV systems and provide simple (linear) formulas for w̃δ, cj
that exploit the shape of Vδ, W . The direct construction of
w̃δ (using Prop. 2) is illustrated in Section V with a numerical
example. In general there exists a degree of freedom in the
design of w̃δ that allows for a trade-off between conservatism
and computational complexity, compare also Remark 8 and
the numerical example (Sec. V).

2) Terminal ingredients: In the following, we illus-
trate a simple procedure to compute terminal ingredients
(Vf , Xf , kf , w) that satisfy Assumption 6.

Proposition 4. Let Assumptions 1–5 hold. Assume that there
exist a feedback kf and a terminal cost Vf , such that the
conditions (14a), (15) in Assumption 6 hold for all x ∈ Rn
with Vf (x) ≤ γ and some constant γ > 0. Without loss of

6The proof equally applies to polytopic functions of the form√
Vδ(x, z, v) = maxi Pi(x−z), as it mainly hinges on using the triangular

inequality.
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generality7, suppose that id−αl ◦α−1
f ∈ K, where id denotes

the identity. Consider the terminal set

Xf = {(x, s) ∈ Rn+1| s ∈ [0, sf ], Vf (x) ≤ γ},

with some positive constants sf , γ. There exist functions fj ∈
K∞, j = 1, . . . , p, such that the following condition holds for
all γ ∈ [0, γ]

sup
(x,s)∈Xf

gj(x, kf (x)) + cjs ≤ gj(0, 0) + fj(γ) + cjsf . (24)

Suppose that the function w̃δ and the terminal set satisfy

sup
(x,s)∈Xf

w̃δ(x, kf (x), s) ≤ a0 + a1
√
γ + a2sf , (25)

with some positive constants a0, a1, a2 and a2 < 1 − ρ. If
there exists a constant γ ∈ (0, γ], that satisfies

a0 + a1
√
γ

1− ρ− a2
≤ min
j=1,...,p

−gj(0, 0)− fj(γ)

cj
≤ s, (26)

then Assumption 6 is satisfied with kf , Vf , Xf , γ, N ≥ N0,

sf := min
j=1,...,p

−gj(0, 0)− fj(γ)

cj
, (27a)

w :=ρ−N · √cδ,lα−1
f (αl(α

−1
f (γ))), (27b)

N0 := logρ

(√
cδ,lα

−1
f (αl(α

−1
f (γ)))

(1− ρ)sf

)
. (27c)

Proof. Part I. The robust positive invariance condition (14b)
follows from

Vf (x+ + dw)
(15)
≤ Vf (x+) + αf (‖dw‖)

(14a),(4a)
≤ Vf (x)− `(x, kf (x)) + αf (ρNw/

√
cδ,l)

(5a)
≤Vf (x)− αl(‖x‖) + αf (ρNw/

√
cδ,l)

(15)
≤ Vf (x)− αl(α−1

f (Vf (x))) + αf (ρNw/
√
cδ,l)

≤γ − αl(α−1
f (γ)) + αf (ρNw/

√
cδ,l)

(27b)
= γ

and

s+ ≤ ρs− ρNw + w̃δ(x, kf (x), s)
(25)
≤ ρsf + a0 + a1

√
γ + a2sf

(26)(27a)
≤ sf .

Part II. Assumptions 3, 4 and (14a) ensure

gj(x, kf (x))− gj(0, 0)
(6)
≤ Lj‖(x, kf (x))‖

(5a)
≤Ljα−1

l (`(x, kf (x))
(14a)
≤ Ljα

−1
l (Vf (x)) ≤ Ljα−1

l (γ),

for all (x, s) ∈ Xf . Thus, (24) is satisfied with fj(γ) =
Ljα

−1
l (γ). Satisfaction of (14d) follows from (24) and (27a).

7[49, Lemma B.1] There exists a function α̂ ∈ K∞ such that α̂ ≤ αl◦α−1
f ,

id−α̂ ∈ K. Thus, we can replace αl◦α−1
f by α̂ in the proof and (27b)–(27c).

Part III. Satisfaction of condition (14c) follows from

w̃δ(x, kf (x), s)
(25)
≤ a0 + a1

√
γ + a2sf

(26)(27a)
≤ (1− ρ)sf

(27b)(27c)
= ρN−N0w ≤ w.

Similarly, (27a) in combination with (26) implies (14e).

This proposition provides a simple procedure to compute a
suitable terminal set under few conditions for relatively general
nonlinear systems. For a quadratic stage cost `(x, u) = ‖x‖2Q+
‖u‖2R, a quadratic terminal cost Vf (x) = ‖x‖2P and a linear
feedback kf (x) = Kfx that locally satisfy (14a), (15), can
be computed using standard methods [1], [38]. Condition (25)
requires a bound on the uncertainty close to the origin. The
maximal tube size sf is defined as large as possible, such that
the tightened constraints (14d) are satisfied in the terminal
set. In Proposition 5 below, we show how these conditions
simplify for LPV systems. Interestingly, equation (27b) shows
that we can consider arbitrary large w, if N is sufficiently
large. The practical implication is that we can even operate
the system in regions with large uncertainty, if we can be
certain that this effects only an initial part of a sufficiently
long predicted trajectory (N>>1). In particular, the constraints
(11d), (11g) and (11h) implicitly define the following bound
on the uncertainty wk|t

sN |t =

N−1∑
k=0

ρN−1−kwk|t ≤ sf ≤ s.

3) Algorithm: The offline and online computation are sum-
marized in Algorithm 1 and 2, respectively.

Algorithm 1 Offline Computation
1: Choose stage cost ` (Assumption 3) and constraint set Z .
2: Verify incremental stabilizability (Ass. 2, [24, Alg. 2]):

- Obtain scalars ρ ∈ [0, 1), δloc, compute cj (Prop. 1).
3: Obtain uncertainty bound w̃δ (Ass. 5):

- Describe uncertainty W (Sec. III-D1, Ass. 1).
- Compute w̃δ using Prop. 2 or 3.

4: Compute terminal ingredients (Ass. 6, Prop. 4):
- Compute Vf , kf [38].
- Choose γ ∈ (0, γ], such that condition (26) holds.
- Compute sf , w, N0 (27).
- Choose N ≥ N0.

Algorithm 2 Online Computation
1: Measure the state xt.
2: Solve the MPC optimization problem (11).
3: Apply the control input: ut = u∗0|t.
4: Set t = t+ 1 and go back to 1.

IV. SPECIAL CASES

This section considers important special cases of the pro-
posed framework. The special case of additive disturbances
is presented in Section IV-A. Section IV-B considers LPV
systems and compares the resulting scheme with some of the
existing methods.
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A. Additive disturbances

The simplest and thus most common way to treat uncer-
tainty in MPC is to consider additive disturbances with a
constant bound W , as for example done in [12], [13], [14],
[16], [18], [19], [36]. This is a special case of the previous
derivation, by considering the constant

wmin =w := sup
z,v,v+,dw

√
Vδ(f(z, v) + dw, f(z, v), v+) (28)

s.t. (z, v) ∈ Z, (f(z, v), v+) ∈ Z, dw ∈ W(z, v).

In the following, we show how the problem simplifies in this
case. A preliminary8 version of the following robust MPC
scheme has been presented in [31].

Assumption 7. There exist a terminal controller kf : Rn →
Rm, a terminal cost function Vf : Rn → R≥0, and a
terminal set Xf ⊂ Rn, such that the following proper-
ties hold for any x ∈ Xf and all dw ∈ Rn, such that
Vδ(x

+ + dw, x
+, kf (x+)) ≤ ρ2Nw2 with x+ = f(x, kf (x)):

Vf (x+) ≤Vf (x)− `(x, kf (x)), (29a)

x+ + dw ∈Xf , (29b)
1− ρN

1− ρ
w̄ ≤s =

√
δloc, (29c)

gj(x, kf (x)) + cj
1− ρN

1− ρ
w ≤0, j = 1, . . . , p, (29d)

Furthermore, there exists a function αf ∈ K∞ such that

Vf (z) ≤ Vf (x) + αf (‖x− z‖), ∀x, z ∈ Xf .

Compared to Assumption 6, the conditions (14c)-(14d) sim-
plify to (29c)–(29d), with s = 1−ρN

1−ρ w, wmin = w. Compared
to the nominal conditions for the terminal ingredients [38],
[1], the tightened state and input constraints (29d) need to
be satisfied and the terminal set should be robust positively
invariant (RPI) (29b). The corresponding optimization problem
is given by

VN (xt) = min
u·|t

JN (x·|t, u·|t) (30a)

s.t. x0|t = xt, xk+1|t = f(xk|t, uk|t), (30b)

gj(xk|t, uk|t) +
1− ρk

1− ρ
cjw ≤ 0, (30c)

xN |t ∈ Xf , k = 0, . . . , N − 1, j = 1, . . . p. (30d)

The only difference compared to a nominal MPC scheme is the
fact that the tightened constraints (30c) are considered along
the prediction horizon. Compared to the formulation in (11),
the constraint tightening is computed offline, which leads to
a computational complexity equivalent to the corresponding
nominal MPC scheme. However, describing the uncertainty
as additive disturbances instead of state and input dependent
uncertainty can introduce a lot of conservatism. The following
theorem establishes the corresponding closed-loop properties.

Theorem 2. Let Assumptions 1–5 and 7 hold, and suppose
that problem (30) is feasible at time t = 0. Then (30) is

8Compared to [31], a more general stage cost and nonlinear constraints are
considered. Furthermore, [31] considers no terminal ingredients.

recursively feasible, the constraints (2) are satisfied and the
origin is practically asymptotically stable for the resulting
closed-loop system (12).

Proof. The proof is similar to [31] and is a special case of
Theorem 1. In particular, wk|t = w implies

sk|t =

k−1∑
i=0

ρiw =
1− ρk

1− ρ
w.

The remainder of the proof is the same as in Theorem 1.

Remark 7. In [12], a constraint tightening for linear systems
subject to additive disturbances is considered. The considered
constraint tightening (30c) can be interpreted as an overap-
proximation of the constraint tightening in [12], compare [31,
Remark 14] for details. In particular, the overapproximation
is a result of the simple description of the stabilizability
property using inequality (4c), instead of explicitly using the
general nonlinear uncertain dynamics (1). Thus, the presented
framework can be viewed as a simple to implement (cf. [37])
extension of [12] to nonlinear uncertain systems, based on
the incremental stabilizability property (Ass. 2). In [50] a
more elaborate method to compute an explicit offline con-
straint tightening for nonlinear uncertain systems is proposed.
The resulting constraint tightening often has a similar shape
as (30c), compare [50, Fig. 2], however, the method suffers
from a more complex offline computation.

B. Linear parameter varying systems

We consider the special case of LPV systems

xt+1 =(A0 +Aθt)xt + (B0 +Bθt)ut + Edt, (31)

where dt are additive disturbances and Aθ ∈ Rn×n, Bθ ∈
Rn×m are time-varying uncertain matrices

Aθt =

q∑
i=1

θi,tAi, Bθt =

q∑
i=1

θi,tBi, (32)

with time-varying unknown9 parameters θt ∈ Rq . We assume
that there exist polytopes D, Θ, such that θt ∈ Θ, dt ∈ D for
all t ≥ 0. The nominal prediction model f is simply a linear
time-invariant (LTI) system

f(xt, ut) = A0xt +B0ut. (33)

Furthermore, we consider a polytopic constraint set Z (2) with

gj(x, u) = Lj,xx+ Lj,uu− 1 ≤ 0, j = 1, . . . , p, (34)

and a quadratic stage cost `(x, u) = ‖x‖2Q+‖u‖2R, with Q, R
positive definite. The following proposition shows how the
design simplifies in this setup.

Proposition 5. Suppose (A0, B0) is stabilizable, i.e. there
exists a feedback K such that AK := A0 +B0K is Schur.

9In case θt has a bounded rate of change and θt can be measured/estimated
online, updating the nominal system f can reduce the conservatism, compare
e.g. MPC for LPV systems [51] and robust adaptive MPC [52].
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1) There exists a compact polytope10 P = {x ∈ Rn| Pix ≤
1, i = 1, . . . r} with AKP ⊆ ρP, ρ ∈ [0, 1). Assump-
tion 2 is satisfied with

√
Vδ(x, z, v) = maxi Pi(x − z),

κ(x, z, v) = v + K(x − z). Furthermore, constants cj
satisfying (8) in Prop. 1 can be computed using (39).

2) Denote the vertices θj ∈ vert(Θ). The following function
satisfies Assumption 5

w̃δ(z, v, c) := w̃(z, v) + Lwc, (35)

w̃(z, v) := max
i,j

Pi[Aθjz +Bθjv] + di,

Lw := max
i,j

max
∆x∈P

Pi(Aθj +BθjK)∆x,

di := max
d∈D

PiEd, i = 1, . . . , r. (36)

3) Denote cmax := maxj=1,...,p cj , d = maxi=1,...,r di and
assume further that

ρ+ Lw + cmaxd ≤ 1. (37)

Then Assumption 6 is satisfied with w = s =∞,

kf (x) = Kx, Vf (x) = ‖x‖2Pf , (38a)

Pf = A>KPfAK +Q+K>RK, (38b)
Xf := {(x, s)|Pix+ s ≤ 1/cmax, i = 1, . . . , r}. (38c)

Proof. Part I. The existence of the contractive polytopic
set P is ensured by [53, Lemma 5]. Furthermore,

√
Vδ is

the Minkowski functional of P [54, Definition 3.2], and
thus satisfies (4c) with δloc (and thus s) arbitrarily large.
Compactness of P implies that there exists a constant cδ,l,
such that (4a) holds. The conditions (4a), (4b) are satisfied with
cδ,u := maxi ‖Pi‖2 and κmax := ‖K‖2/cδ,l. The constants cj
can be determined by the following linear program (LP)

cj = max
x∈P

[Lj,x + Lj,uK]x. (39)

The contraction ρ is computed using min ρ s.t. AKP ⊆ ρP ,
which can be cast as an LP, compare [54, Thm. 4.1].
Part II. We show the second claim by using Proposition 2.
Condition (21a) is satisfied with√

Vδ(z+ + dw, z+, v+) = max
i
Pi [Aθz +Bθv + Ed]

≤ max
i,j

Pi[Aθjz +Bθjv] + di = w̃(z, v).

The inequality follows from the fact that
√
Vδ is linear in

θ, and d, and thus attains its extreme value on a vertex.
Similarly, the continuity condition in (21b) is satisfied with√
Vδ(x, z, v) = maxi Pi∆x ≤ c, ∆x = x− z and

w̃(z + ∆x, v +K∆x)

= max
i,j

Pi[Aθj (z + ∆x) +Bθj (v +K∆x)] + di

= max
i,j

Pi[Aθjz +Bθjv] + di + Pi(Aθj +BθjK)∆x

(35)
≤ w̃(z, v) + Lwc. (40)

10In case of symmetric polytopes P , the formulas simplify with
Vδ(x, z, v) = ‖P (x−z)‖∞ and only half the indices i need to be enumerated
in w̃(z, v).

Part III. The proof is similar to Prop. 4, but utilizes the the
incremental Lyapunov function Vδ to construct the terminal
region, which results in simpler conditions. A similar design
has been proposed in [52]. Conditions (14a), (15) are satisfied
with Pf based on the discrete-time Lyapunov equation (38b).
Conditions (14c), (14e) are satisfied by definition, with s =
w =∞. The uncertainty satisfies

max
(x,s)∈Xf

w̃δ(x, kf (x), s) = max
Pix+s≤1/cmax

w̃(x, kf (x)) + Lws

(40)
≤ max

Pix+s≤1/cmax

w̃(0, 0) + Lw(s+ max
i
Pix) = d+ Lw/cmax.

(41)

For any (x, s) ∈ Xf , the robust positive invariance condi-
tion (14b) follows from

s+ + max
i
Pi(x

+ + dw) (42)

≤s+ + max
i
Pix

+ + max
i
Pidw

≤ρs− ρNw + w̃δ(x, kf (x), s) + ρmax
i
Pix+ ρNw

(41)
≤ ρ(s+ max

i
Pix) + d+ Lw/cmax

(37)
≤ 1/cmax.

Satisfaction of (14d) follows from

gj(x, kf (x)) + cjs = −1 + (Lj,x + Lj,uK)x+ cjs
(8)
≤ − 1 + cmax(s+ max

i
Pix)

(38c)
≤ 0,

with cj from (39).

Remark 8. The function w̃δ is such that the corresponding
robust MPC optimization problem (11) is a quadratic program
(QP), where the constraint (11e) can be formulated as r · p
linear inequality constraints. The computational demand can
be decreased by considering a simpler (but more conservative)
function w̃δ . For example, with Θ = [−1, 1]q we can use

w̃δ(z, v, c) = max
i
Pi

q∑
j=1

(Ajz +Bjv) + di + Lwc, (43)

Lw = max
i

max
∆x∈P

Pi

q∑
j=1

(Aj +BjK)∆x,

which can be implemented with r linear inequality constraints.
Thus, in general the design of w̃δ includes a degree of freedom
that can be utilized to trade off computational complexity
against conservatism, compare also [52]. The results in Propo-
sition 5 can also be formulated with a quadratic incremental
Lyapunov function Vδ(x, z, v) = ‖x − z‖2P , however, the
construction of w̃δ then typically requires either conservative
overapproximations or results in a quadratically constrained
QP (QCQP).

Remark 9. The construction of the terminal ingredients uses
condition (37), which requires ρ + Lw < 1 in addition to
a bound on the additive disturbances d w.r.t. the size of
the constraint set (as characterized by cmax). The condition
ρ + Lw < 1 is a natural condition for LPV systems in the
considered setup, as it ensures that Aθ +BθK is stable with
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the common Lyapunov function V = maxi Pix. The definition
of w̃δ in Proposition 5 implies

sN |t ≥
N−1∑
j=0

(Lw + ρ)N−j−1w̃(xj|t, uj|t).

Thus, ρ + Lw < 1 also ensures that the tube size s does
not increase arbitrarily. This is in contrast to the competing
approaches [14], [15], [28], where the tube size s can grow
exponentially with the prediction horizon N , compare the
numerical example in Section V.

Remark 10. The presented design can be also applied
to nonlinear systems affine in parameters θ with quadratic
or polytopic incremental Lyapunov functions Vδ (Prop. 3),
compare also the numerical example (Sec. V). The simple
condition (37) is, however, not necessarily suitable for more
general incremental Lyapunov functions Vδ , since the proof
exploits the triangular inequality in (42). We expect that the
presented method can be extended to adaptive MPC with
online estimated parameters θ similar to [52], [55].

Remark 11. For the special case of LPV systems, the pro-
posed approach can be viewed as a simplified (and hence com-
putationally more efficient) version of existing methods [25],
[26], [27], [2, Chap. 5]. In particular, with a polytopic tube√
Vδ(x, z, v) = maxi Pi(x − z) the approach is similar

to [25]. The main simplification is that we characterize the
tube and contractivity of this polytope with scalars w, ρ,
instead of treating each vertex/halfspace of the polytope sep-
arately.

Similarly, in case of ellipsoidal tubes Vδ(x, z, v) = ‖x −
z‖2P , we can formulate a simplified version of [26]. Here,
the simplification (and thus reduction in the computational
demand) is more pronounced, as we use a scalar s to pa-
rameterize the tube instead of optimizing matrices P ∈ Rn×n
online, compare also Remark 3.

While these approximations can introduce some conser-
vatism, the resulting simplicity is also the main benefit of the
proposed approach. In particular, the considered formulation
is equally applicable to linear and nonlinear systems, additive
disturbance, parametric uncertainty and general nonlinear
mixed uncertainty. The description with w̃δ makes it also easy
to use further approximations, such as (43), to reduce the com-
plexity and thus allow an application to higher dimensional
systems. The conservatism and computational complexity will
be further explored in the numerical example in Section V. A
quantitative comparison for linear systems with a polytopic
tube can be found in [52].

V. CASE STUDY: NONLINEAR QUADROTOR

The following example details how the proposed approach
can also be applied to uncertain nonlinear continuous time
system, compare Appendix A). Furthermore, we demonstrate
the computational efficiency and performance relative to ex-
isting approaches using min-max diff. inequalities [21], [40]
and Lipschitz bounds [14], [28]. In addition, we showcase
that considering state and input dependent uncertainty reduces
the conservatism compared to simple constant bounds on the

uncertainty. The offline and online computation is done using
SeDuMi-1.3 [56] and CasADi [57], respectively. An additional
example with robust collision avoidance for autonomous ve-
hicles using a non-quadratic incremental Lyapunov function
(c.f. [24]) can be found in [58].

System model: We consider the following continuous-time
10-state quadrotor model [40]

ẋ1 =v1 + 0.1w1, v̇1 = g tan(φ1),

ẋ2 =v2 + 0.3w2, v̇2 = g tan(φ2),

ẋ3 =v3 + 0.5w3, v̇3 = −g + kTu3,

φ̇1 =− d1φ1 + ω1, ω̇1 = −d0φ1 + n0u1,

φ̇2 =− d1φ2 + ω2, ω̇2 = −d0φ2 + n0u2,

x =
(
x1, x2, x3, v1, v2, v3, φ1, ω1, φ2, ω2

)> ∈ R10,

u =
(
u1, u2, u3

)> ∈ R3,

where (x1, x2, x3) are the position, (v1, v2, v3) are the veloc-
ities, (φ1, φ2) denote the pitch and roll, (ω1, ω2) the pitch
and roll rates, and (u1, u2, u3) are the adjustable pitch an-
gle, roll angle and the vertical thrust. The parameters are
d0 = 10, d1 = 8, n0 = 10, kT = 0.91, g = 9.8, and
the constraint set is

Z = {x1 ≤ 4, |φi| ≤ π/4, |u1,2| ≤ π/9, u3 ∈ [0, 2g]},

which can be written using Lj,x, Lj,u, compare (34). As
in [40], we consider the problem of stabilizing the steady-
state xr = [3, 3, 10, 07]> with the quadratic stage cost
`(x, u) = ‖x − xr‖2Q, Q = diag[1, 1, 1, 07] and the initial
state x0 = [02, 2, 07]>.

Additive disturbances: We first consider quadratically con-
strained additive disturbances w = [w1, w2, w3]>, with
‖w‖2 ≤ 1, as in [40]. For simplicity, we compute a quadratic
incremental Lyapunov function Vδ(x, z) = ‖x− z‖2P , and lin-
ear feedback κ(x) = Kx offline, such that fκ(x, v) = f(x, v+
κ(x)) is incrementally exponentially stable (Ass. 2, Ass. 9) and
the sublevel set Vδ(x, xr) ≤ 1 ensures (x, κ(x) + ur) ∈ Z
and is robust positively invariant for the perturbed dynamics
fκ(x, v) + Ew. To this end, we parameterize the Jacobian[

∂f

∂x

]
(x,u)

=A0 +

2∑
i=1

θnl,i(x)Ai = Aθnl ,
∂f

∂u
= B,

θi,nl(x) = tan(φi)
2 ∈ Θi,nl = [0, tan2(π/4)].

The desired conditions (Ass. 2) can be ensured by solving the
following linear matrix inequalities (LMIs) offline

min
X,Y
− log det(X) (44)

s.t. Aθnl,iX +BY + (Aθnl,iX +BY )> + 2ρcX ≤ 0,(
Aθnl,iX +BY + (Aθnl,iX +BY )> + λX E

∗ −λI3

)
≤ 0,

θnl,i ∈ vert(Θ1,nl ×Θ2,nl), i = 1, . . . , 22,(
1 Lj,xX + Lj,uY
∗ X

)
≥ 0, j = 1, . . . , p,

with P = X−1, K = Y P , and θnl,i the 22 vertices,
compare [59][24, Prop. 5]. The constant λ ≥ 0 is due to the
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application of the S-procedure and can be computed using
bi-section. The resulting constants (Ass. 2, Prop. 1, (48))
are λ = 0.1084, ρc = 0.192, δloc = 1, cδ,l = 0.016,
cδ,u = 23.63, maxj cj = cmax = 1. In the following,
we only consider the pre-stabilized dynamics fκ(x, v). The
continuous-time disturbance bound (48) is given by wc =
max‖w‖2≤1 ‖Ew‖P = 0.1646.

The prediction horizon is set to T = 3 s and we consider
piece-wise constant input signals v·|t with a sampling time
of h = 0.3 s (N = T/h = 10). In closed-loop operation,
we apply the input uτ = v∗0|t + κ(xτ ), τ ∈ [t, t + h]. The
discrete-time prediction model is defined with the 4th order
Runge Kutta method and the step size h. For simplicity, we
only consider the constraints at the sampling instances τ = hk,
k ∈ N. The corresponding discrete-time contraction rate is ρ =
e−ρch = 0.944 and the discrete-time disturbances bound (28)
is w = wc(1 − e−ρch)/ρc = 0.48. As in Section IV-A, the
tube size is given by sτ |t = (1 − e−ρcτ )/ρcwc, with sT |t =

sf = (1− e−ρcT )/ρcwc =
1− ρN

1− ρ
w = 0.37.

The terminal set is chosen as Xf = {x| Vδ(x, xr) ≤ γ2},
with γ = 1/cmax − sf = 0.63 (c.f. Prop. 5), which satisfies
the RPI condition (29b) and thus Assumption 7. The terminal
cost Vf (x) = ‖x−xr‖2Pf is computed based on the linearized
model and the Lyapunov equation, such that (29a) holds with
v = kf (x) = 0.

We would like to point out that the constants ρ, w can, as
done here, be obtained based on continuous-time constants
ρc, wc. Alternatively, given a fixed sampling time h and
a corresponding discrete-time model, the constants can be
directly computed. One of the advantages of considering the
continuous-time formulation is that the Jacobians Aθnl , B
used in the LMI computation are significantly simpler.

Closed-loop simulations: The corresponding open-loop
prediction x∗k|t with the implicitly defined tube Xk|t =

{x| Vδ(x, x∗k|t) ≤ s2
k|t} and an exemplary closed-loop tra-

jectory can be seen in Figure 3.
Discussion: The same example11 has been considered

in [40] with a different robust MPC approach [21], compare
Remark 3. The crucial difference between the two approaches
is that we compute the incremental Lyapunov function Vδ
and thus the constraint tightening offline, while the method
in [21] computes the incremental Lyapunov function Vδ online.
Although in this example we can consider an equal magnitude
of disturbances, in general the approach presented in this
paper may be more conservative compared to the approach
in [21]. This conservatism is (partially) due to the difference
between the offline chosen incremental Lyapunov function Vδ
and the online optimized one in [21]. On the other hand, in
case of constantly bounded additive disturbances, the online
computational demand of the proposed approach is equivalent
to nominal MPC, while the online computation in [21], [40]
is increased by a factor of 500 compared to the nominal

11Compared to [40], we introduced a constraint on φi, since the system
is not well defined for φi = ±π/2. In the nominal case (w = 0), we were
unable to find a feasible solution with the posed constraints and a prediction
horizon of T = 1.2 s (which is considered in [40]).

implementation, compare12 [40]. This is due to the fact that
the proposed approach requires no additional input or state
variable in case of constantly bounded additive disturbances
(compare Section IV-A), while in [40], (n2 +n)/2 = 55 addi-
tional state variables and n ·m = 30 additional decision/input
variables are needed.

If a Lipschitz-based approach is considered (Pδ = In, K =
0, compare [14]), we have Lipschitz constant L = 1.8, w =
0.15 and thus for N ≥ 3 the predicted tube is larger than the
constraint set or, alternatively, for N = 10 the magnitude of
the disturbances has to be reduced by 99% to ensure that the
tube s is contained in the constraint set Z (independent of the
terminal region).

Thus, in the considered scenario the proposed approach has
a computational complexity which is equivalent to [14] and
significantly reduced compared to [21], while the conservatism
is similar to [21] and significantly reduced compared to [14].

Parametric uncertainty: In the following, the parameters
n0, d0 are subject to a (possibly time-varying) uncertainty of
±10% and we neglect the additive disturbances (w = 0). The
uncertain nonlinear system dynamics can be written as

ẋ =f(x, u) +Aθparx+Bθparu,

Aθpar =

2∑
i=1

θpar,iApar,i, Bθpar =

2∑
i=1

Bpar,i, θpar ∈ [−1, 1]2.

Again, we compute a simple quadratic incremental Lyapunov
function Vδ(x, z) = ‖x − z‖2P and a linear feedback κ(x) =
Kx offline. Similar to the discrete-time LPV design in Prop. 5,
the function13

w̃δ(x, v, s) = max
i
‖Aθpar,ix+Bθpar,i(v +Kx)‖P + Lws,

Lw = max
i
‖P 1/2(Aθpar,i +Bθpar,iK)P−1/2‖, (45)

satisfies the continuous-time condition (48) with the vertices
θpar,i ∈ {−1, 1}2, compare Remark 8. Note that due to
the symmetry in θpar, the function w̃δ in (45) can be im-
plemented using only 2 inequality constraints with θpar,i ∈
{(1, 1); (1,−1)}. For the considered approach ρc > Lw is
crucial (Prop. 5, Remark 9). Thus, we compute the matrices
P,K similar to (44) by enforcing ρc ≥ 0.4 and Lw ≤ 0.3,
with the following additional constraint(

LwX AθparX +Bθpar,iY
(AθparX +Bθpar,iY )> LwX

)
≥ 0.

We choose the terminal set Xf = {(x, s) ∈ Rn+1| s ∈
[0, sf ], Vδ(x, xr) ≤ γ2}, with sf = Lw

cmaxρc
= 0.75,

γ = ρc−Lw
cmaxρc

= 0.25 (compare Prop. 4–5).

Remark 12. (Continuous-time formulations) The simplicitiy
of the function (45) shows the benefit of considering the
continuous-time model. In particular, as detailed in Prop. 5,
we can consider the same kind of function in a discrete-

12In [40] it is reported that the average computational time per real time
iteration (RTI) with the nominal certainty-equivalent MPC is 159 µs, and
81.6 ms with the tube MPC, thus increasing the computational demand by
81.6ms/159µs ≈ 500.

13For the numerical implementation, we use ‖x‖P ≈
√
x>Px+ ε, with

ε = 10−4 and implement maxi using 4 inequality constraints.
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time formulation, if we have a discrete-time model affine in
the parameters. However, while the continuous-time system
is affine in the uncertain parameters (d0, n0), the non-trivial
discretization (in this case 4th order Runge Kutte) results in
a discrete-time model which is nonlinear in the uncertain
parameters. Thus, in case that a physics-based continuous-
time model is considered, it may be easier to also formulate
the design of w̃δ in continuous-time (App. A). This is also the
reason why research in robust adaptive MPC (dealing with
parametric uncertainty) is typically formulated in continuous-
time, compare e.g. [60].

The only drawback of continuous-time formulations is the
needed discretization for the continuous-time tube predictions
in (50d), (50e), compare Remark 15 in Appendix A for
details on possible implementations. To allow for a simple
implementation, we assume that (x, u) are constant in the
sampling interval h (which is clearly an approximation).
Thus, the (piece-wise linear) continuous-time dynamic ṡ =
(Lw − ρc)s + w̃δ(x, u, 0) in (50d) can be exactly discretized
resulting in

s+ = e−(ρc−Lw)hs+
1− e−(ρc−Lw)h

ρc − Lw
w̃δ(x, u, 0),

which has been used in the implementation. In the considered
example, this formula is almost equivalent to a simple Euler
discretization of the tube dynamics with s+ = (1 − hρc)s +
hw̃δ(x, u, s).

Due to the significant increased uncertainty in the pitch/roll
dynamics, we now require a larger prediction horizon of
T = 4.5 s (N = 15) to find a safe trajectory. The (continuous-
time) disturbance bound is given by wc = γρce

ρcT = 0.6,
which satisfies the conditions on the terminal region. The
resulting predicted trajectory can be seen in Figure 3. The
constraints wτ |t ≤ w and sT |t ≤ sf implicitly constrain the
optimized trajectory to avoid maneuvers which are too risky
(in terms of the uncertainty), while the constraint tightening
enforces a safe distance to critical constraints commensurate
with the predicted uncertainty s·|t. The combination of these
features ensures that the MPC acts cautiously and ensures
constraint satisfaction despite uncertainty. In particular, the
peak values of φ1, φ2, u1, u2 corresponding to the parametric
uncertainty are reduced by 30 − 70% compared to the first
scenario without parametric uncertainty. Alternatively, if one
would like to use a constant bound (Sec. IV-A) with the
considered terminal region (instead of considering the state
and input dependency of the uncertainty), this would require
wτ |t ≤ 0.36, which is ensured if either the maximal allowed
values of φ1, φ2, u1, u2 or the parameter uncertainty in d0, n0

is reduced by 85%. Thus, the more detailed state and input
dependent characterization of the uncertainty significantly
reduces the conservatism of the robust MPC.

In this example, the proposed nonlinear robust MPC scheme
requires roughly 1/m ≈ 33% more decision variables and
2 ·N additional nonlinear inequality constraints (45), resulting
in roughly 4.5 times as large computation time compared to
a nominal MPC scheme. By replacing (45) with the simpler

and more conservative formula

w̃δ(x, v, s) :=‖Aθpar,1x‖P + ‖Bθpar,1(v +Kx)‖P + Lw,2s,

Lw,2 :=‖P 1/2Aθpar,1P
−1/2‖+ ‖P 1/2Bθpar,1KP

−1/2‖,

we can reduce the online computational demand by 32%, at
the cost of increased conservatism, compare Remark 8.

Similar to the first scenario, Lipschitz based approaches [28]
(Pδ = In, Kδ = 0) cannot be applied since the propagated
tube size becomes overly large over the prediction horizon
with LNd ≥ 6 · 103.

Fig. 3. Top: Additive disturbances. Bottom: Parametric uncertainty. Initially
predicted trajectory x∗·|0 (blue, solid), uncertainty tube X∗·|0 (red ellipse),
terminal set Xf (green ellipse), state constraint (x1 ≤ 4, turquoise plane)
and an exemplary closed-loop trajectory xt (black, dotted). The projections
on the t–x1 and x1–x3 plane are also shown for illustration.

To summarize, in the considered numerical example we
have demonstrated: (i) the computational efficiency relative
to [21], [40], (ii) significantly reduced conservatism compared
to [14], [28] and comparable conservatism to [21], [40],
(iii) reduced conservatism using a state and input dependent
uncertainty characterization, (iv) the possibility to trade off
conservatism and computational complexity in the design of
w̃δ .
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VI. CONCLUSION

We have presented a nonlinear robust tube MPC frame-
work based on incremental stabilizability that ensures ro-
bust constraint satisfaction and recursive feasibility despite
disturbances and uncertainty. The scheme is applicable to
nonlinear systems, can incorporate general state and input
dependent uncertainty descriptions and is easy to implement.
Furthermore, the framework allows for an intuitive trade-off
between computational demand and conservatism by using
more detailed, and hence more complex, descriptions of the
uncertainty w̃δ . We have demonstrated the applicability of the
proposed framework in comparison to state of the art robust
MPC approaches with a nonlinear benchmark example.

Current research focuses on extending this framework to
output feedback [47] and adaptive MPC [52].
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APPENDIX

In Appendix A, the main results of the paper are extended
to continuous-time systems. In Appendix B, the theory is
extended to general (continuous) nonlinear constraint.

A. Continuous-time systems
In the following, we detail the exact conditions, functions

and properties for the continuous-time formulation of the
proposed nonlinear robust MPC framework.

Setup: We consider a nonlinear perturbed continuous-time
system, which is given by the following ordinary differential
equation (ODE)

d

dt
x = ẋ = fw(x, u, d) = f(x, u) + dw(x, u, d),

with state x ∈ Rn, control input u ∈ Rm, disturbance d ∈ D ⊂
Rq , perturbed system fw, nominal model f , model mismatch
dw and some initial condition x0. We impose state and input
constraints

(xt, ut) ∈ Z, t ∈ R≥0, (46)

with some compact nonlinear constraint set

Z = {(x, u) ∈ Rn+m| gj(x, u) ≤ 0, j = 1, . . . , p} ⊂ Rn+m.

Define the projected state constraint set

Zx = {x ∈ Rn| ∃u ∈ Rm, (x, u) ∈ Z}.

Remark 13. For the theoretical analysis, we consider the case
where the constraints (46) need to be satisfied for all continu-
ous point in time t ∈ R≥0. In a standard implementation, the
constraints are often only enforced at sampling time points
tk = kh, k ∈ N with the sampling time h > 0. Continuous-
time (t ∈ R) constraint satisfaction can be achieved by
enforcing the constraints at sampling points tk in combination
with an appropriate constraint tightening, compare [61], [62].

Assumption 8. For each (x, u) ∈ Z , there exists a compact
set W(x, u) ⊂ Rn, such that the model mismatch dw satisfies
dw(x, u, d) ∈ W(x, u) for all d ∈ D.

Such a description includes additive disturbances, multi-
plicative disturbances, more general nonlinear disturbances,
and/or unmodeled nonlinearities.

Local Incremental stabilizability: In order to provide theo-
retical guarantees for robust stabilization, we assume that the
system is locally incrementally stabilizable.

Assumption 9. There exist a control law κ : Rn → Rm, an
incremental Lyapunov function Vδ : Rn×Rn → R≥0, which is
continuous in the first argument and satisfies Vδ(z, z) = 0 for
all z ∈ Rn, and parameters cδ,l, cδ,u, δloc, κmax, ρc > 0, such
that the following properties hold for all (z, v + κ(z)) ∈ Z
with Vδ(x, z) ≤ δloc:

cδ,l‖x− z‖2 ≤ Vδ(x, z) ≤cδ,u‖x− z‖2, (47a)

‖κ(x)− κ(z)‖2 ≤κmaxVδ(x, z), (47b)
d

dt
Vδ(x, z) =

∂Vδ
∂x
|(x,z)ẋ+

∂Vδ
∂z
|(x,z)ż

≤− 2ρcVδ(x, z), (47c)

with ẋ = f(x, κ(x) + v), ż = f(z, κ(z) + v).

The dynamics and constraints can be reformulated with
fκ(x, v) = f(x, v+κ(x)), gj,κ(x, v) = gj(x, v+κ(x)). Thus,
Assumption 9 ensures that the system fκ is exponentially
incrementally stable, similar to [18]. Note that this assumption
is stronger than Assumption 2 due to the parametrization
of κ, which will be essential to allow for a simple finite
parametrization of the decision variable v·|t in the MPC
optimization problem (50). In the following, we consider the
continuous-time input u = v+κ(x) with a piece-wise constant
input v optimized online.

Efficient disturbance description:

Assumption 10. There exists a function w̃δ : Z×R≥0 → R≥0,
such that for any (x, z, v + κ(z)) ∈ Rn × Z with Vδ(x, z) ≤
c2 ≤ δloc and any dw ∈ W(x, v + κ(x)), we have

d

dt

√
Vδ(x, z) ≤ −ρc

√
Vδ(x, z) + w̃δ(z, v, c), (48)

ẋ = fκ(x, v) + dw, ż = fκ(z, v).

Furthermore, w̃δ satisfies the monotonicity property in (10b).

Proposition 6. Let Assumption 9 hold. Suppose there exists a
function w̃δ that satisfies the monotonicity property (10b) and
the following condition for any (x, z, v + κ(z)) ∈ Rn × Z ,
dw ∈ W(x, v + κ(x)):

∂Vδ
∂x
|(x,z)dw ≤2

√
Vδ(x, z)w̃δ(z, v, c). (49)

Then this function w̃δ satisfies Assumption 10.

Proof. Using
d

dt

√
Vδ =

1

2
√
Vδ

d

dt
Vδ , the condition in As-

sumption 10 follows from

d

dt
Vδ(x, z) =

∂Vδ
∂x
|(x,z)(fκ(x, v) + dw) +

∂Vδ
∂z
|(x,z)fκ(z, v)

(47c),(49)
≤ − 2ρcVδ(x, z) + 2w̃δ(z, v, c)

√
Vδ(x, z).

We consider the problem of stabilizing the origin and
assume that (0, κ(0)) ∈ int(Z), fκ(0, 0) = 0. The open-loop
cost over a prediction horizon T ∈ R of a predicted state and
input sequence x·|t, v·|t is defined as

JT (x·|t, v·|t) =

∫ T

τ=0

`(xτ |t, vτ |t) + Vf (xT |t),

with some positive definite stage cost ` and terminal cost Vf .
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The MPC optimization problem is given by

min
v·|t,w·|t

JT (x·|t, v·|t) (50a)

s.t. x0|t = xt, s0|t = 0, (50b)
ẋτ |t = fκ(xτ |t, vτ |t), (50c)
ṡτ |t = −ρcsτ |t + wτ |t, (50d)
wτ |t ≥ w̃δ(xτ |t, vτ |t, sτ |t), (50e)
gj,κ(xτ |t, vτ |t) + cjsτ |t ≤ 0, (50f)
sτ |t ≤ s, wτ |t ≤ w, (50g)
(xT |t, sT |t) ∈ Xf , (50h)
τ ∈ [0, T ], j = 1, . . . , p,

We consider a piece-wise constant parametrization of v with
a sampling time h and implement the continuous-time input

uτ+t = v∗τ |t + κ(xτ+t), τ ∈ [0, h]. (51)

The conditions on the stage cost ` and the constraint set Z
are equivalent to the discrete-time case with Assumptions 3–4,
with exponential summability replaced by exponential integra-
bility, i.e.

∫∞
0
αc(re

−ρcτ )dτ =: αc,ρc(r) ∈ K∞. Correspond-
ingly, Proposition 1 is also equivalent.

Terminal ingredients: The assumption regarding the termi-
nal ingredients (Ass. 6) changes as follows.

Assumption 11. There exist a piece-wise constant feedback
kf : Rn → Rm, a terminal cost function Vf : Rn → R≥0,
a terminal set Xf ⊂ Rn+1, a constant w ∈ R≥0 and a
function αf ∈ K, such that for any (xf , sf ) ∈ Xf , any w ∈
1− e−ρch

ρc
[wmin, w], and any trajectories xτ , sτ , τ ∈ [0, h]

satisfying

ṡτ ≤− ρcsτ + w̃δ(xτ , kf (xf ), sτ ),

ẋτ =fκ(xτ , kf (xf )),

with initial conditions

s0 ≤sf − e−ρc(T−h)w,

Vδ(x0, xf ) ≤e−2ρc(T−h)w2,

the following properties hold for any τ ∈ [0, h]:

Vf (xh)− Vf (xf ) ≤−
∫ h

0

`(xτ , kf (xf ))dτ + αf (w),

(52a)
(xh, sh) ∈Xf , (52b)

w̃δ(xτ , kf (xf ), sτ ) ≤w, (52c)
gj,κ(xτ , kf (xf )) + cjsτ ≤0, j = 1, . . . p, (52d)

sτ ≤s. (52e)

Note that the requirement (52d) is stricter than assuming
constraint satisfaction in the terminal set, since (xτ , sτ ) ∈ Xf ,
τ ∈ (0, h) does not necessarily hold. Furthermore, we restrict
ourselves to piece-wise constant terminal controllers to allow
for a simple implementation.

The following theorem establishes the closed-loop proper-
ties of the proposed nonlinear robust MPC scheme.

Theorem 3. Let Assumptions 3–4, 8–11 hold, and suppose
that (50) is feasible at t = 0. Then (50) is recursively feasible,
the constraints (46) are satisfied and the origin is practically
asymptotically stable for the resulting closed-loop system (51).

Proof. The proof is structured analogous to the proof in
Theorem 1.
Part I. Candidate solution: For convenience, define v∗τ |t =
kf (x∗T |t), w∗τ |t = w̃δ(xτ |t, vτ |t, sτ |t), τ ∈ [T, T + h] with kf
from Ass. 11 and x∗τ |t, s

∗
τ |t, τ ∈ [T, T+h] according to (50c)–

(50d). Consider the candidate solution

x0|t+h =xt+h, s0|t+h = 0, (53a)
vτ |t+h =v∗τ+h|t, τ ∈ [0, T ], (53b)

wτ |t+h =w̃δ(xτ |t+h, uτ |t+h, sk|t+h), , τ ∈ [0, T ], (53c)

with x·|t+h, s·|t+h according to (50c)–(50d). Assumption 10,
Inequality (48) and (50d) ensure√

Vδ(xt+h, x∗h|t) ≤ s
∗
h|t≤s≤

√
δloc.

Using the contractivity in Assumption 9 recursively, we get√
Vδ(xτ |t+h, x

∗
τ+h|t) ≤ e

−ρcτs∗h|t ≤
√
δloc, (54)

for any τ ∈ [0, T ].
Part II. Tube dynamics: In the following, we show by
induction that the following inequalities hold for τ ∈ [0, T ]:

sτ |t+h ≤s∗τ+h|t − e
−ρcτs∗h|t, (55)

wτ |t+h ≤w∗τ+h|t. (56)

For τ = 0, Inequality (55) is trivially satisfied with equality.

Furthermore, Assumption 10, (10b) ensures w0|t+h
(10b),(53c)
≤

w̃δ(x
∗
h|t, v

∗
h|t, s

∗
h|t)

(50e)
≤ w∗h|t, with c2 = s0|t+h = 0, c1 = s∗h|t,

Vδ(x0|t+h, x
∗
h|t) ≤ [s∗h|t]

2 = (c1 − c2)2.

Suppose (55) holds at some τ . Consider c2 = sτ |t+h, c1 =
s∗τ+h|t. The incremental Lyapunov function satisfies√

Vδ(xτ |t+h, x
∗
τ+h|t)

(54)
≤ e−ρcτs∗h|t

(55)
≤ c1 − c2.

Thus, Assumption 10, (10b), and (50e) imply wτ |t+h ≤
w∗τ+h|t. Consider the differentiation

d

dτ

[
sτ |t+h − s∗τ+h|t + e−ρcτs∗h|t

]
(50d)
= ρc(s

∗
τ+h|t − sτ |t+h) + wτ |t+h − w∗τ+h|t

− ρce−ρcτs∗h|t
≤− ρc(sτ |t+h − s∗τ+h|t + e−ρcτs∗h|t).

Given that (55) holds for τ = 0, the Inequality (55) holds for
all τ ∈ [0, T ].
Part III. State and input constraint satisfaction:
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For τ ∈ [0, T − δ], we have

gj,κ(xτ |t+h, vτ |t+h) + cjsτ |t+h
(8)
≤gj,κ(x∗τ+h|t, v

∗
τ+h|t)

+ e−ρcτ cjs
∗
h|t + cjsτ |t+h

(55)
≤ gj,κ(x∗τ+h|t, v

∗
τ+h|t) + cjs

∗
τ+h|t

(50f)
≤ 0.

The terminal condition (50h) ensures constraint satisfaction
for τ ∈ [T − h, T ] with

gj,κ(xτ |t+h, vτ |t+h) + cjsτ |t+h
(8)(54)(55)
≤ gj,κ(x∗τ+h|t, v

∗
τ+h|t) + cjs

∗
τ+h|t

(52d)
≤ 0.

Part IV. Tube bounds (50g): Inequalities (55) and (56) ensure
that (50g) holds for τ ∈ [0, T − h]. For τ ∈ [T − h, T ],
(x∗T |t, s

∗
T |t) ∈ Xf implies

sτ |t+h
(55)
≤ s∗τ+h|t

(52e)
≤ s,

wτ |t+h
(56)
≤ w∗τ+h|t

=wδ(x
∗
τ+h|t, v

∗
τ+h|t, s

∗
τ+h|t)

(52c)
≤ w. (57)

Part V. Terminal constraint satisfaction (50h): The terminal
state and terminal tube size satisfy√

Vδ(xT−h|t+h, x
∗
T |t)

(54)
≤ e−ρc(T−h)s∗h|t,

sT−h|t+h ≤ s∗T |t − e
−ρc(T−h)s∗h|t

d

dτ
sτ |t+h ≤ −ρcsτ |t+h + wτ |t+h, τ ∈ [T − h, T ].

Using wτ |t ∈ [wmin, w] and the linear dynamics in s (50d), we
have s∗h|t ∈ (1−e−ρch)/ρc ·[wmin, w]. Thus Ass. 11 and (52b)
ensure (xT |t+h, sT |t+h) ∈ Xf .
Part VI. Practical stability: For τ ∈ [0, T ] we have:

`(xτ |t+h, uτ |t+h)− `(x∗τ+h|t, u
∗
τ+h|t)

(7)(54)
≤ αu(e−ρcτs∗h|t) ≤ αu

(
1− e−ρch

ρc
e−ρcτw

)
.

Practical stability follows similar to Theorem 1.

Remark 14. Compared to Assumption 2, Assumption 9 is
stronger, as it requires the explicit knowledge of κ to be used
to compute the closed-loop input (51) and we need the special
structure κ(x, z, v) = v + κ(x)− κ(z). It is possible to relax
this assumption to the existence of an exponentially stabilizing
open-loop input sequence for any feasible trajectory, similar
to Assumption 2 (compare also Remark 1). In this case,
recursive feasibility can be shown similar to Theorem 1
with the stabilizing input sequence as a feasible candidate
solution. This, however, requires that the stabilizing input-
sequence is in the set of considered input trajectories in the
optimization problem (50), which causes difficulties if a simple
input parametrization is considered, e.g. piece-wise constant.
Furthermore, since in this case the feedback is only present at
the next sampling instance the initial propagation of the tube

changes to

ṡτ |t = Lcsτ |t + wτ |t, τ ∈ [0, h], (58)
wτ |t = w̃δ,L(xτ |t, uτ |t, sτ |t), τ ∈ [0, h], (59)

where the (possibly positive) constant Lc and function w̃δ,L
need to satisfy the following condition similar to (48) (in the
absence of feedback κ):

d

dt

√
Vδ(x, z) ≤ wL

√
Vδ(x, z) + w̃δ,L(z, v, c), (60)

d

dt
x = f(x, v) + dw,

d

dt
z = f(z, v).

for all (x, z, v) ∈ Rn ×Z .
In case of piece-wise constant input sequences u, the

stabilizability condition reduces to Assumption 2, where the
discrete-time model is defined as the integration of the
continuous-time model and ρ = e−ρch. Similarly, the discrete-
time function w̃δ can be defined implicitly based on the
continuous-time function w̃δ and the integration of s us-
ing (50d). Although the formulations are equivalent, it may
often be more convenient to formulate the function w̃δ in
continuous-time and define the discrete-time functions implic-
itly based on a suitable discretization, compare the numerical
example in Section V.

Remark 15. The dynamic propagation of s·|t with w·|t can
pose numerical challenges, since the decision variable w·|t is
a continuous-time trajectory. One solution to this problem is
to replace (50e) with an equality constraint and thus eliminate
w·|t as a decision variable. In this case the dynamics of (x, s)
in (50b)–(50e) can be jointly discretized.

However, for many design choices of w̃δ it is numerically
more efficient to implement (50e) using multiple nonlinear
inequality constraints, compare e.g. (35), (45). In this case it
is more natural to also impose a piece-wise constant structure
on the decision variable w·|t, similar to v·|t. In this case the
considered optimization problem (50) has the complexity of a
nominal continuous-time MPC with m + 1 inputs (v, w) and
additional nonlinear inequality constraints (50e), similar to
the discrete-time case.

B. General nonlinear constraints

In the following, we show how the proposed approach can
be extended to more general nonlinear constraints. Consider
the following nonlinear constraint set

Z̃g = {(x, u) ∈ Z| g̃j(x, u) ≤ 0, j = 1, . . . , q}, (61)

where the functions g̃j need not satisfy Assumption 4.

Assumption 12. The functions g̃j are continuous, i.e., there
exist functions αj ∈ K∞, such that for any r, r̃ ∈ Z

g̃j(r̃)− g̃j(r) ≤ αj(‖r − r̃‖), j = 1, . . . , q. (62)

Furthermore, there exist constants λj > 0, such that

αj(ρc) ≤ ρλjαj(c). (63)

Condition (63) is satisfied by any polynomial function αj
with positive coefficients. In the following, we show how the
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presented approach can be extended to such continuity bounds.
The consideration of the more general bound (62) instead of
the Lipschitz bound (6) can also reduce the conservatism.

Proposition 7. Suppose that Assumptions 2 and 12 are satis-
fied, then there exist functions α̃j ∈ K∞, j = 1, . . . , q, such
that the following inequalities hold for all (x, z, v) ∈ Rn×Z
and all c ∈ [0,

√
δloc], with Vδ(x, z, v) ≤ c2:

g̃j(x, κ(x, z, v)) ≤g̃j(z, v) + α̃j(c), (64)

α̃j(ρc) ≤ρλj α̃j(c). (65)

Proof. The proof is analogous to Proposition 1, based on (4a)
and (4b), with α̃j(c) := αj

(√
(1/cδ,l + κmax)c

)
.

In order to ensure robust constraint satisfaction for the more
general nonlinear constraint set Z̃g , the following constraints
need to be added to the optimization problem (11):

hj,k+1|t =

k∑
i=0

α̃j(ρ
k−iwi|t), hj,0|t = 0, (66a)

g̃j(xk|t, uk|t) + hj,k|t ≤ 0, (66b)

hj,N |t ≤ hj,f , k = 0, . . . , N − 1, j = 1, . . . , q. (66c)

Assumption 13. Consider the terminal ingredients in Assump-
tion 6. There exist constants hj,f , j = 1, . . . , q, such that the
following properties hold for any (x, s) ∈ Xf

g̃j(x, kf (x)) + hj,f ≤0, (67a)

α̃j(w̃δ(x, kf (x), s)) ≤(1− ρλj )hj,f + ρλj α̃j(ρ
N−1wmin).

(67b)

The conditions on hj,f can be viewed as an extension of
the conditions on the tube size s in (14b), (14d), (14e).

Lemma 1. Suppose that the conditions in Theorem 1 and
Assumptions 12 and 13 are satisfied. Consider the closed-
loop system (12) based on the optimization problem (11) with
the additional constraints (66). Then this optimization problem
is recursively feasible, the constraints (61) are satisfied and
the origin is practically asymptotically stable for the resulting
closed-loop system (12).

Proof. The proof follows the arguments of Theorem 1.
Part I. Candidate solution: analogous to Thm. 1 with hj,·|t+1

according to (66a).
Part II. Tube dynamics: The following inequality holds for
k = 0, . . . , N − 1:

hj,k|t+1
(66a)
=

k−1∑
i=0

α̃j(ρ
k−i−1wi|t+1) (68)

(19)
≤

k−1∑
i=0

α̃j(ρ
k−i−1w∗i+1|t)

(66a)
= h∗j,k+1|t − α̃j(ρ

kw∗0|t).

Part III. State and input constraint satisfaction (66b):
For k = 0, . . . , N − 2 we have

g̃j(xk|t+1, uk|t+1) + hj,k|t+1

(17),(64),(68)
≤ g̃j(x

∗
k+1|t, u

∗
k+1|t) + h∗j,k+1|t

(66b)
≤ 0.

The terminal condition (66c) ensures constraint satisfaction for
k = N − 1 with

g̃j(xN−1|t+1, uN−1|t+1) + hj,N−1|t+1

(17),(64),(68)
≤ g̃j(x

∗
N |t, u

∗
N |t) + h∗j,N |t

(67a),(66c)
≤ 0.

Part IV. Terminal tube constraint (66c). Given (x∗N |t, s
∗
N |t) ∈

Xf and h∗j,N |t ≤ hj,f , we have

hj,N |t+1
(66a)
=

N−1∑
i=0

α̃j(ρ
N−i−1wi|t+1)

(19)
≤

N−1∑
i=0

α̃j(ρ
N−i−1w∗i+1|t) =

N−1∑
i=1

α̃j(ρ
N−iw∗i|t) + α̃j(w

∗
N |t)

(65)
≤ ρλj

N−1∑
i=1

α̃j(ρ
N−i−1w∗i|t) + α̃j(w

∗
N |t)

(66a)
≤ ρλj [h∗j,N |t︸ ︷︷ ︸

(66c)
≤ hj,f

−α̃j(ρN−1 w∗0|t︸︷︷︸
(13)
≥wmin

)] + α̃j(w
∗
N |t)

(67b)
≤ hj,f .

Remark 16. Lemma 1 shows that the proposed framework can
also ensure robust constraint satisfaction for general nonlinear
constraint. If α̃j is of the form α̃j(r) = c̃jr

λj with positive
constants c̃j , λj , the constraints (66a) can be replaced by

hj,k+1|t = ρλjhj,k|t + c̃jw
λj
i|t , hj,0|t = 0.

In this case, the computational demand with q general non-
linear constraints and p Lipschitz continuous constraints is
equivalent to a nominal MPC scheme with n + 1 + q states
(x, s, hj) and m + 1 inputs (u,w). Thus, the computational
complexity of the robust tube MPC increases with the number
of nonlinear constraints q (which are not Lipschitz continu-
ous). The proposed framework can also be extended to robust
collision avoidance, which requires additional (dual) decision
variables, compare [58].
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