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Abstract: We are motivated by the idea of finding feedback laws for rotat that only require
transmission of scalar signals. In particular, we develogxéremum seeking control law for systems
living on the special orthogonal group. In addition, we @oolir system with the capability of obstacle
avoidance using the idea of navigation functions, alondittes of Koditschek and Rimon [1990].

1. INTRODUCTION do not apply to SO(3) due to its non-Euclidean structure. We
will outline this on an example.

1.1 Motivating Scenario For the solution to the problem posed in subsection 1.1, it

remains to construct a dynamical system (i) that evolves on

Assume a scenario in which a satellite is equipped With @e rotation matrices, (ii) that avoids obstacles in theseenf
telescope and the goal is to navigate the satellite to ae®fer 5 path planning problem and (iii) that (practically) stédsit

configurationR* of its state space, which are the rotation mage gestination point, i.e. it incorporates feedback in@gath
trices. In doing so, one is restricted to sparse commuoIGati janning problem in the sense of Koditschek.

Specifically, it is only possible to transmit scalar-valsaghals

¢. In addition, the satellite must avoid certain orientai@® 1.3 Contribution and Structure of the Paper

as for instance the telescope shall not face the direction of

laws based only on scalar information that drive a dynamicghe gistance to the target configuration as well as the distem
system on the rotation matrices from an initial rotation to ghe obstacles. From this function, we will construct a natin

target rotation whilst avoiding certain “obstacle” rotats. function inR3%3, Thereafter, we restrict the resulting system to
SO(3). To be able to rely only on scalar signals, we consamict
1.2 Previous Work extremum seeking system whose solution stays “close” to the

solution of the gradient system for the navigation function
To approach the problem described in subsection 1.1, we e
ploy two methodologies — The path planning problem is a
dressed using the principles of navigation functions. eeslf

e remainder of the paper is structured as follows; In sacti

, we formalize our setup and state the problem that we are
. . . oing to solve. Section 3 introduces some basic methods and
back law based on scalar information can be derived by meaﬁ&tions that are relevant for this work. Therein, subsecBid
of extremum seeking. introduces basic facts on navigation functions, subse®i@

When we say path planning problem, we mean what Kavrakpntains stability definitions, and subsection 3.3 exjslassen-
and LaValle [2008] call the piano mover’s problem, i.e. fimgli tial facts on extremum seeking systems. We present our main
a continuous path from initial to target configuration awogd result in section 4, where we elaborate the stability proger
obstacles and not leaving the workspace. The problem wakthe proposed solution. An additional result regarding th
initially posed by Reif [1979] in a yet different fashion. ®n Proposed navigation function has been moved to Appendix A.
solution to the problem that has also significantly motidate\We validate our ideas on a numerical example in section 5 and
our study is to employ a navigation function, which has beegonclude the paper with section 6.

proposed by Koditschek [1987]. The idea was formalized for )

so-called sphere worlds by Koditschek and Rimon [1990]. A-4 Notation

problem closely related to the one presented herein was dis- ) )

cussed by Rimon [1991]. Diirr et al. [2013a] solved a path-pla Rotation matrices are members of the special orthogonalgro
ning problem using scalar feedback by employing extremu®O(3). We smoothly embed SO(3) into thé*3 matrices, i.e.
seeking. Global stability properties of extremum seeking iSO(3)= {R€ R¥3|R"R=I,detR= 1}, wherel is the identity
Euclidean space was proven by Tan et al. [2006] and Duef R¥3. For theR3*3 matrices, we take the standard scalar
et al. [2013a]. For a general introduction to extremum segeki productx-y = tr (xTy), X, y € R332, For the matrices forming
systems, we refer to Ariyur and Krsti¢ [2003]. The abovelliss  an orthogonal basis fdk3*3, we write Ej, i.e. Ejj is the ma-
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1). For correspondencerai | to: j an- maxinilian. nontenbruck@ i, i =1, 2, 3. The tangent spac&30(3) is a vector space,
ist.uni-stuttgart.de and we will refer to its orthogonal complement agSO(3),




i.e. tr(x"y) = 0 whenx eTrSO(3) andy eTxSO(3). As both
are linear spaces, we can define projections P fRoth® to

TrSO(3) and ESO(3); We will refer to these projections as
Pr and R, respectively. Iff is a differentiable function map-

configurations, i.e. we insist th&@V is invariant with respect
to (4) under (5). We assume thatis given in form

W = {Re SO(3)d| (R) € [0,r3] }. (6)
(6) is commonly referred to as a sphere world (see Koditschek

ping from SO(3) toR, by gradf, we mean the unique vec- and Rimon [1990]). In addition, we want to avoid certain

tor field satisfying & (f o A)(s)[s—0 = (gradf (R),V), where
(-,-) is the Riemannian metridj : [—€,&] —+SO(3),A(0) =
R, and disA(s) =V for everyV €TrSO(3). Correspondingly,
by the operator Hess, we mean the form Hd& (V) =
% (f oA)(8)|s=0. If in contrast,g is a function mapping from
R3<3 to R, we will replace grad byl such thaflg(x) denotes a
matrix which hasl%jg(x) as theith element of itsjth column,
wherex;j denotes théth component of thgth column ofx.
Further, we replace Hess hy?, such that7?g(x) (y) denotes
a matrix which hasDa%ijg(x) -y as theith element of itsjth
column. If M is a set, then we will denote the boundaryhdf
by dM and the interior oM by int(M). If M is a subset of
SO(3), with crif (f), we refer to the set of points i where

gradf vanishes. If, in contrasiM is a subset ofR3*3, with
critv (9), we refer to the set of points M whereldg vanishes.

In a differential equatiox = f (x), the overdot abbreviatq]%,

obstacledD; whilst moving towardsR*, i.e. we insist that all
O; are repelling with some regard. We assume that therenare
obstacles given by

O ={ReSO(3)|dg (R € [0,rF]}, i=1,---,m (7)
That is, either the obstacles are merely poiitand we add the
radiusr; for the sake of conservativity, or the obstacles indeed
occupy volume in state space. The latter two equationsaestr
our maneuvering to the so-called free space
m
s=w\|Jo;, (8)
i=1
and we assume that all obstacles are contained in the warkspa
and that they do notintersect, i@.c Wforalli=1,--- ;mand
OiNOj=0foralli, j=1,---,m,i # j, respectively. We also
presumeR* € int(S). Formally, our design goal is to choose (5)

such that
R(t) € int(S) 9)

wheret is the time. In the right-hand side of the differentialfr all times.

equation, we will often drop the explicit dependence on time

whenever it can be inferred from the context. By the function 3. METHODS AND PRELIMINARIES
d:R33 x R3*3 R, we mean the distance functionit?*3,

If we fix one of the arguments, we writh(x,y) = dy (y), such Our main resultis based on two concepts, one of which is the

that concept of a navigation function, i.e. a function that has th
_ AT (B property that its gradient flows convergeR® from almost all
O, (Re) =1r <(R2 R (R Rl)) ' @) initial conditions without leavings. Consequently, we include
Correspondingly, we refer to an open ballRi*® by some definitions from stability theory needed in the remaind
B, = (Roc R3X3|dR (Ro) € [0,r)} @) of this paper. The other conceptis extremum seeking, wtdoh ¢
1 1 ’ ’

be utilized to generate scalar-valued feedback laws. Itiqoar
lar, we will utilize an extremum-seeking approximation &as
on the Lie-bracket system proposed by Diirr et al. [2013b].

If we want to exclude the members &°*2 that are not
members of SO(3), then we write

Br, = {Re € SO(3)[dr, (R2) € [0,1)}- (3) o .
With &, we refer to the direct sum of vector spaces. We denot?e1 Navigation Functions
the Weingarten map of SO(3) at a polby 2r. Whenx € R",
we writex = [x] to indicate that we denote tlia entry ofx by
x. Equivalently, wherx € R™™, we writex = [x;] to indicate
that we denote thigh entry of thejth column byx;;. Q are the
rational numbers.

The concept of a navigation function was introduced by
Koditschek and Rimon [1990]. The goal is to design a function
which has a gradient flow converging B from almost all
initial conditions without leaving.

Definition 1.(Koditschek and Rimon [1990]). Le¥l be com-
pact, connected, analytic, and have nonempty boundary. An
analytic, polar, Morse, admissible functidh — R is said to

be a navigation function oll.

2. PROBLEM STATEMENT

We are interested in controlling systems of the form

R=RU, R(to) =Ry, (4)  With this in mind, define the function : R®<3 — R,

whereRy €SQ(3) is the state antl € so (3) the input of the 2_d(R =0

system. Our goal is to steer the system to a target configarati BGi(R) = {do RI_r2 i—1 (10)

R* by means of appropriate choiceldf In doing so, we restrict R(R—rf i=1--.m

ourselves to feedbacks: R x R x R — so (3) depending only These functions have the property that

on scalar-valued information, i.e. S={ReSOI)|Bi(R) >0vi=0,--- ,m}. (11)
U=U(w¢(R),t) (5)  With this relation at hand, we can also find that

with & :SO(3) — R, wherew = [w] € R® are design parameters 0S={ReSO(3)|3i: B (R) =0}. (12)

with w = ajw, aj € Q and a; # aj for i # j. The latter

W= ' ; _ For the distance to the reference, we introd@te R3*3 — R,
restriction is rather technical and for details on this wiere A

to Durr et al. [2013b]. The state and the target configuration B*(R)=dr- (R), (13)
R* are encoded ig, but are not available to the system. andB : R3S 5 R,

. . . . m
In the course of the navigation to the attituBe we restrict B(R) = (14)

I:LBi (R).

ourselves to a certain workspaw¢ describing the feasible



In particular, we will employ the functioth : R3*3 — R, Remark 1.Note that the extension of this theory to SO(3) is
B* (R) nontrivial as Koditschek and Rimon [1990] cover only differ
¢ (R = T (15) ential equations with Euclidean state-spaces. The réstric
* k f the flow of the gradient system for the navigation function
(6B R)*+BR) o gradient sy gatior
does not necessarily inherit the convergence propertiestne
with sufficiently large integek. This function has some partic- ambient space. Therefore, Lemma 2 does not hold true directl
ularly nice properties. Amongst themh,has the image (S) =  for the restriction of-(¢ to SO(3). We want to briefly illustrate
[0,1] and the preimageg—*(0) = R* and¢—1(1) = dSonits this on an example; Therefore, IRt = | and, for simplicity,
extrema. Moreover, its level se8s = {Re §¢ (R) € [0,h]} are  m= 0. This is the simplest case of the considered setup, where
compact for alh € (0,1] and we havé; = S, the target configuration lies in the center of the workspaxk a

Koditschek and Rimon [1990] use the vector fieldl¢ to j[her.e is no obstacles obstructing uifrom getting thgr?/.(keYﬂn

employ its integral curves as solutions to the path plannirg this case, we have(g (R) = — (df (R) —di (R) +r3) "I —

problem. For application of this methodology, we need toehavy, (R) %(d,k(R) —d (R + r%)l/k*l (_kdlkfl (R) + 1) I. With Pr

appropriate counterparts @, O;, andSin the ambient space y _ 1n/pTy _ yT P _ _ (gk

R3*3, Therefore, we define the ambient workspace X=3R(R le/kx R). this is gradli (Rk) PrO® (R) Z(dl'/ﬁa
—d (R)+13)"" (RR—1) +di (R) £ (d (R) — di (R) +r3)

W = {Re R*3|d, (R) € [0,r§]} (16) ) .
’ ’ —kd R)+1) (R2—1). Thus, grad (R) vanishes when-
the ambient obstacles (—kd (R +1) ( ) grad (R)

- everR? = |, i.e. whenR is symmetric. Apart from the desired
G = {ReR¥*¥dg (R) [0,r]}, i=1,--,m, (17)  configurationR = |, symmetry ofR is also satisfied on a con-
and hence the ambient sphere world nected, compact set. Note that the soluti®e= | is isolated
m from this other set. For details on this, we refer to Schmidt
S=W\ U 0. (18) etal. [2013a,b]. As, in this particular case, the solufba | is

isolated, we can however infer that we have a unique solution
if we chooserg sufficiently small, i.e. if we exclude the set
L ~ of symmetric matrices that not equal the identity from our
R=U, R(tp) =Ry, (19) workspace.

where Ry € R3*3 s the state and) € R3®3 is the input
of the system. The goal is to steer the system to the tar
configurationR* by means of appropriate choiceldf In doing
so, we restrict ourselves to scalar feedback law®3*3 x R x

R — R33, je.

i=1
In this spirit, we also introduce the ambient system

9%12 Practical Stability

Definition 2. A point R* is said to be practically uniformly
stable with respect to (19) under (20), if for everyg (0, ),

- el o there exist € (0,) anday € (0,), such that for altp € R,
u=u (a),E (R) ,t) (20) e (wp, ), Ro € B, impliesR(t) € BE,. Equivalently, a point
with & 1 R33 — R, whered = [G] € R®*3 are design pa- R* is said to be practically uniformly stable with respect tp (4
ramefers withw = aij , aj € égh]diij £ ot for i #Ear?d under (5), if for everye € (0,), there existd € (0, ) agd

j # . The latter restriction in rather technical and for detaits @ € (0, ), SUCEh that for alltp € R, w € (o, ), Ro € By
this we refer to Diirr et al. [2013b]. The staReand the target impliesR(t) € Bg..

configurationR* are encoded ig, but are not available to the Definition 3. A point R is said to be practically uniformly
system. attractive with respect to (19) under (20), if there exists a

) ) ) ) 0 € (0,), such that for everg € (0, »), there exist € [0, )
Animportant result of Koditschek and Rimon [1990] is that, b and ay, € (0,), such that for allty € R, w € (ap, ), t €
constructiong is a navigation function of. [to-+1,00), Ro € BZ. impliesR(t) € BS.. Equivalently, a point
Lemma 1(Koditschek and Rimon [1990])¢ is a navigation R* is said to be practically uniformly attractive with respamt
function onSfor sufficiently large integek. (4) under (5), if there exists & € (0,), such that for every

€ € (0,0), there existts € [0,0) and wyp € (0,), such that

By 5 i
. ~ foralltg € R, w e (wp,»), t € |tg+1f,0), Ry € B3 implies
crits(¢) = {Re §06 (R) = O}, 1) it gs R @ e @) e lotte) o< By imp
we denote the critical points gf on the domairSand by Definition 4. A point R* is said to be practically uniformly
crits(¢) = {R e S|gradg (R) =0}, (22) attractive onM with respect to (4) under (5), if, for every

compact subset C M, for everye € (0,), there exist; €
[0,00) and ayp € (0,), such that for alktp € R, w € (an,),
t € [to+tf,), Ry € K impliesR(t) € Bg..

we denote_the critical points gf on the domairS. As ¢ is
Morse andS compact, crig(¢) consists of isolated points and
has finite cardinality. Koditschek and Rimon [1990] propbse

the gradient system Remark 2.Note that Definition 4 implies Definition; if there
5 ~ ~ existsd € (0,) such thatM contains the closure @&3.. This
Z=-0¢(2), Z(to) = Zo, (23) is because we can chookein Definition 4 to be the closure

and investigated its stability properties. of Bg*. Vice versa, Definition 3 implies Definition 4 if we set

Lemma 2(Koditschek and Rimon [1990]). cgt¢) are hyper- M = Bg..

bolic equilibria of (23) and (23) converges to gli$). More-  pefinition 5. A point is said to be practically uniformly asymp-

over, the equilibriaZ € crits(¢) \ {R*} of (23) are unstable totically stable with respect to (19) under (20), if it is ptiaally

whereas the equilibriuidi = R* of (23) is asymptotically stable. uniformly stable with respect to (19) under (20) and pradlyc
uniformly attractive with respect to (19) under (20). Equiiv



lently, a point is said to be practically uniformly asymptatly  (0,) such that for every € (wp, ), to € R, Zg = Ry € K,
stable with respect to (4) under (5), if itis practically fonmly  t [to,to+tf], dzt) (R(t)) € [0,D).
stable with respect to (4) under (5) and practically unifiyrm

attractive with respect to (4) under (5). Proof. Consider
For the definitions above, we omit the term “practically’thg Y = > Z Y)YQi,YQi], Y(to) =Yo (27)
right-hand side of the differential equation under consitien
does not depend omn. and (4) under feedback (25), whefe:] is the Lie bracket

of vector fields. As a consequence of Lemma 3, for every
3.3 Extremum Seeking K cSO(3),D € (0,), t; € (0,), there exists amy € (0, )

(
such that for evernyw € (ap,), thr € R, Yo =Ry € K, t €
For the system (23), one needs to feed bagkR). However, [to,to+tf], dyvq (R(1)) € [0 D) We clearly have
we are interested in scalar feedbacks (20). To constru¢t suc , 3
feedbacks, Diirr et al. [2013b] proposed the so-callectextim = Z[q&( )YQi, YQi thr (Q YO (Y )) YQ;. (28)
seeking feedback 25

. . We then use the decompositii*® = Ty SO(3)p Ty SO(3) to
U ( ) Z Z EIJ \/_COS((QJ ) write
O¢ (Y) = gradp (Y) +grad ¢ (Y) (29)

vajsin(@jt)) (24 with gradg (Y) € TySO(3) and grad¢ (Y) € T+SO(3). We
to approximate (23), where the matridgggform an orthogonal moreover haverQ; € TySO(3) and hence have the identity
basis ofR3*3. We can se€ = ¢ and we assume that ay; tr (QiYT grad- ¢ (Y)) = 0, which follows from the orthogonal-
are chosen to be nonidentical and rational multiple&ofThe ity of TySO(3) and 1}30(3) Hence,
following results were proven.

Lemma 3(Durr et al. [2013b]). Consider (23) and (19) under = Z Y)YQi,YQi] = Ztr (Q Y " gradg (Y )) YQi. (30)
feedback (24). Let there exi& c R3*3 such thatZ (tp) € B

implies Z(t) € B with A € [0,»). Then for every bounded We know that a tangent vector of SO(3) at a pd#SO(3) has
KcB,De (0, oo), t¢ € (0,), there exists any € (0,00) such the formYQ with Q € so(3). Therefore, can write graf(Y) =
that for everyw € (wp,®),to € R, Zo=Ro € K, t € [to,to+ ], Y, With Qrb € 50(3). Thus

Az (R(1) < [0.0)- o _ Y)YQ,YQ] =2 5 tr(QiQs)YQi.  (31)
Lemma 4(Durr et al. [2013b]) If a point is asymptotically 2 Zi Z\
stable for (23), then it is practically uniformly asympttily  Next, we use a property of the Lie algebr3). Namely, every
with respect to (19) under (24). 3 element of the algebra can be written as a linear combination
Corollary 5. (Durr et al. [2013a]). The poirR = R* is practi- of its generators. It is thus possible to wri@ as Qy =
((:;LI;/ uniformly asymptotically stable with respect to (1@)der Z?:l Qjch to arrive at

3

1 SR
By these results, the problem of constructing a feedback (20 E_Z[fﬁ( )YQi, YQi] = Ztr <Qi > QJ%) YQi. (32
such thatR* is a practically uniformly asymptotically stable 1= =1

equilibrium of system (19) (i.e. in the ambient space) isedl We know that t(Q;Q;) = 0 if i # j because two distinct
The problem of constructing a feedback (5) such tRatis generators are orthogonal to one another and can hence write
a practically uniformly asymptotically stable equilibmiuof

system (4) (i.e. on SO(3)) remains open. > Z Y)YQi,YQ] = Eitr (Qc,)YQi.  (33)
4. MAIN RESULT Moreover, we have {{Q?) = —2 and can therefore see that
3
Durr et al. [2013b] proposed (24) as a scalar feedback teemak =S [0 (Y)YQ,YQ] = — ci¢YQi, (34)
R* a practically uniformly asymptotically stable equilibniu 2-Z| i;

of (19). We will propose a scalar feedback (5) to make \yhich equals-gradg (Y). Hence, ifYo = Zo, thenY (t) = Z (t),

a practical]y uniformly asymptotically stable eqqilibmiuof which concludes the proof. u
l(j‘)ég g%{tflﬁgal; f\r\ée(sf;ropose the extremum seeking feddba(fheorem 7.The equilibriumZ = R* of (26) is asymptotically
stable. Moreover, every sublevel set@fZ) is invariant with
U ( ZlQ R) /@ cos(at) + /@ sin(awt)) respect to (26).
(25) Proof. Consider the Lyapunov function candidate
to approximate the gradient system V(Z)=9(2), (35)
Z=—gradp (2), Z(to) = Zo. (26) Which satisfies/ (Z) > 0 andV (Z) = 0 if and only ifZ = R".

We can sef = ¢ and we have to assume thata@llare chosen we consequer?tly have .
to be nonidentical and rational multiples of V(2)=¢(2)=(gradp (2),Z). (36)

Theorem 6.Consider (26) and (4) under feedback (25). Fopubstituting (26), this is
everyK CcSO(3),D € (0,), t; € (0,), there exists amwy € V(2)= ¢ (Z2) = —(grad¢ (Z) ,grade (2)). (37)



Since SO(3) is Riemannian;,-) is positive definite. Hence,

thatR = R* is practically uniformly asymptotically stable with

V (Z) < 0 and with (35) it follows that every sublevel set ofrespect to (4) under (25) and hence know that there &xist

¢ (Z) is invariant with respect to (26). In additioZ, = R*

(0,00) and ay € (0,), such that for alty € R, w € (wy, ),

implies V (Z) = 0. We know from Koditschek and Rimon R) ¢ B% impliesR(t) € BE for t € [tg, ). Now choose’, €

[1990] that¢ is analytic. Moreover, the equatios Z — | =
0 and deZ — 1 = 0 are analytic. Hence grgdis analytic.
Therefore, the solutions to gradZ) = 0 can only consist of a

finite number of connected components on SO(3) (this is fou

e.g. in Shiota [1997]). By this argumentation, the soluiom

V (Z) = 0 can only consist of a finite number of connected

(0,41) and a compact subskt C A. For every suclK, there
exists at; € R, such that for altp € R, t € [to+1t3,»), Zy € K

rg;pliesz (t)e Bgi. We now seD; = &, — &, let S, denote the

allest sublevel set containikgand set

D2 = min({da(b) [a€ IS, be 3S}), (38)

components on SO(3), as well. By the same argumentation, figg our choice oK. D, exists due to compactness&fandds.
know that¢ (Z) attains a constant value on every connecteext, setDg = min({D1,D}). By means of Theorem 6, there

component of the solution of grgdZ) = 0 on SO(3). Thisis a
consequence of Morse [1939]. Now note tthat' (0) = R* is a
singleton. Thus, the solutich= R* of grad¢ (Z) = 0 on SO(3)
needs to be a singleton as well. Therefotés negative definite
in a neighborhood oR* and hence the equilibriuid = R* of
(26) is asymptotically stable. This was the last asseriiobet
proven. |

existsayp € (wy,) such that for everyw € (ap,»), tp € R,
Ro = Zo € K, t € [to,to+11], dzp) (R(t)) € [0,Do). Because
S C int(S) is invariant with respect to (26), which follows
from Theorem 7, and = R* is uniformly attractive orA with
respectto (26), we hawR(t) € int(S) for allt € [to,to +t1] with

w € (wp, o). Forw € (ap, ), we hence havR(tp+11) € Bgi,
which impliesR(t) € Bg C int(S) fort € [to+1t;,0). As we

By the foregoing theorem, every sublevel seVdiZ) = ¢ (Z)
is an invariant set of (26). We hage ! (1) = dSand can hence
conclude that if (26) is initialized i, then its solution will not
enter anyO; at any time.

Theorem 8.The pointR = R* is practically uniformly asymp-
totically stable with respect to (4) under (25).

have already shown th&(t) € int(S) for all t € [to,to +11],
this concludes the proof. |

Remark 4.If S\ Ahas measure zero in SO(3), the above implies
almost global convergence. ¢f is a navigation function of,
thenS\ A has measure zero; Under additional assumptions, it is
possible to show that is a navigation function o8. We have
moved this result to Appendix A.

Proof. The equilibriumZ = R* of (26) is asymptotically stable.
We have shown thaty = Zg impliesY (t) = Z(t). From Durr
et al. [2013b], we know that a point which is asymptoticath-s
ble for (27) is practically uniformly asymptotically stablvith We want to illustrate our main result on a numerical example.
respect to (4) under (25). Last, we know that, by constructio Therefore, we solve the differential equation (4) undej (&%

U :R3x R xR — so(3) (because the right-hand side of (25) isdesign parameters; = 1, az = 2, a3 = 3 andw = 50 (W =

a linear combination of the generators of the Lie algebtahs 0iw) in MATLAB with ode15s. Therein, we choose the initial
thatR €TrSO(3), hence making SO(3) invariant with respect tvalueRy = I, and the reference and obstacle configurations

5. NUMERICAL EXAMPLE

(4) under (25). [ ] y 0.6428 06634 0383 0.866 04924 0086
. R" = | —0.766 05567 03214} , Ri= [70.5 0.8529 01505] , (39)
Remark 3.We now know that the solutions of (4) under (25) 0 —05 0866 0 —0.1736 0984

stay close (in sense of B-neighborhood) to the solutions of respectively, with radius; = 0.05. We have purposely chosen
(26) and that, in additionR* is practically stabilized. How- R; in a way such that it is located “betweeRy andR*. All

ever, (26) may have solutions that come arbitrarily close toonfigurations are plotted in Fig. 1 together with the nucadri
the boundary of the obstacles; Therefore, in practice, we caolution of (4) under (25). It can be seen that the solution
choose choosgin away such that =r; o+ D, wherer; gisthe  R(t) performs oscillatory motion and approaches the reference
physical radius of the obstacle abds to make the solutions of configuratiorR*. Moreover, as expected, the solution avoids the
(4) under (25) not enter the physical obstacle. Yet, anotlagr obstacleR;.

to approach this issue is addresses in the course of the giroof
the next theorem.

It remains to show (9). For doing so, we use a result of Bhat
and Szeg6 [1967]; Namely, if a point is asymptotically stab
with region of attractionez, then it is uniformly attractive on
/. Thus, as we have shown in Theorem 7 that the equilibriul |-
Z = R* of (26) is asymptotically stable, we know that its regior § =
of attractionsZ is nonempty. Hence, we know moreover, tha ¥
R* is uniformly attractive oneZ with respect to (26). In the
following, let A denoteA = & Nint(S). Hence note thaf = R*
is also uniformly attractive oA with respect to (26).

Theorem 9. R= R*is practically uniformly attractive oA with , . L
respect to (4) under (25). Moreover, for every compact qubsEig- 1. The solutiofR(t) (—) of (4) under (25_) with initial value
K C A, there exists amy € (0,), such that for alltp € R, Ro (—) approaches the reference configurafoit—) and

t € [to, ), W € (o, »), Ry € K impliesR(t) € int(S). avoids the obstaclg; (—). We have plotted two points of
o) (&0,2), Ro P ®) ® view for better illustration. To plot the rotation matriges

we have multiplied them with the unit vectors &f and
depicted the resulting vectors.

Proof. Set &, = min({dr- (a) |a€ dS}). Existence ofe; is
ensured by compactness @5 We know from Theorem 8



6. CONCLUSIONS AND OUTLOOK which is a Sylvester equation with unique solution, becaise
and—R share no eigenvalues. As
We have motivated a scenario where scalar feedbacks shall be DZ¢ (R)(RQ) =0. (A.6)

usgd to nayigate apointon the. rotation m_atr_ices to anotl.r.iet P solves (A.5), we hence know that it is the only solution. ih ca
whilst avoiding obstacles. Using the principles of navigat further be seen that (A.6) holds true®— 0. The only other

functions and extremum seeking systems, we were able tQ, . o o . . :
construct such a feedback. We could prove the convergen%(guuonto (A.6) 'SDz?_Ra;‘p (R)=0foralli, j, which contradicts

and stability properties of the resulting closed-loop egst the result of Koditschek and Rimon [1990] tifats Morse orS
The theoretical results were validated on a suitable nurakeri for sufficiently largek. Thus, (A.6) has no solution in cgit¢)
example. Future research will rely on proper distance fonst andQ = 0 is the unique solution of (A.5). |

on SO(3) rather than on distance functions induced by thRemark 5.Naturally, the condition crif(¢) = critz(¢) is re-

ambient space. strictive. Yet, we have illustrated in Remark 1 that for ayver
simple example (i.eR* =1 andm = 0), the condition holds
Appendix A true for sufficiently smalto.
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. 2 the Riemannian Hessian. Technical Report UCL-INMA-
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