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Institute for Systems Theory and Automatic Control, University of Stuttgart
Pfaffenwaldring 9, 70550 Stuttgart, Germany

mailto:jan-maximilian.montenbruck@ist.uni-stuttgart.de
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1. INTRODUCTION

Extremum seeking controllers are feedbacks of the form

uω : R× R→ Rn, (1)

oscillatory in their second argument, parameterized by the
frequency ω ∈ (0,∞), that have the purpose of steering the
solutions of the system

ẋ = u (P (x) , t) (2)

arbitrarily close to the minima of the unknown function P :
Rn → R, only with the information provided by the values
of P , by choosing sufficiently large ω (we refer the reader to
Ariyur and Krstić (2003) for an introduction to the topic).
One challenge in extremum seeking is to establish stability
properties of (2), such as practical stability (cf. Tan et al.
(2006) or Dürr et al. (2013)). The idea in these approaches
is to choose uω such that solutions of (2) are approximated
by solutions of the associated gradient system

ẏ = −∇P (y) =: Y (y) . (3)

In this paper, we address the question of how to choose uω
if (2) assumes the form

ẋ = f (x) + u (P (x) , t) =: X (x, t) , (4)

i.e. if a drift vector field f : Rn → Rn appears in the closed
loop, but one still wants to bring solutions of (4) arbitrarily
close to the minima of P . As we will see later, this has
potential application in problems where f is unknown,
for instance if it is subject to a parametric uncertainty
(“robust” extremum seeking).

The problem statement resembles the stabilizing ex-
tremum seeking problem for input-affine systems posed
by Scheinker and Krstić (2013a), who proposed a solution
based on control Lyapunov functions and persistence-of-
excitation-type conditions on the control vector fields. Yet,
in contrast to Scheinker and Krstić (2013a), we will not
assume that solutions to (5) approach the minima of P
exactly.
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In particular, we study the convergence properties of (4)
by introducing the auxiliary gradient system with drift

ż = f (z)− k∇P (z) =: Z (z) (5)

via first finding sufficiently large k in order to let solutions
of (5) approach a neighborhood of the minima of P , such
as it was done by Montenbruck et al. (2015), and by
then deriving bounds on the proximity of solutions of (4)
to solutions of (5) via classical extremum seeking, thus
pursuing a two-step procedure. This lets us bring systems
with drift arbitrarily close to the minima of a function P
only via knowledge of the values of P .

Throughout the manuscript, we assume the twice contin-
uously differentiable potential function P : Rn → R given
such that M ⊂ Rn is an asymptotically stable invariant
set of (3). Our goal is to consequently find a function (1)
such that one can bring the solutions of (4) “close” to M ,
as t→∞, for some given twice continuously differentiable
drift vector field f : Rn → Rn.

Notation. By ∇P : Rn → Rn, we mean the unique vector
field which satisfies

∇P (x) · v = lim
h→0

∇P (x+ hv)− P (x)

h
(6)

for any x and v ∈ Rn, where “·” denotes the dot product.
We denote the solution of (4) initialized at x0 by ϕx :
(x0, t) 7→ ϕx (x0, t), the solution of (3) initialized at y0 by
ϕy : (y0, t) 7→ ϕy (y0, t), and the solution of (5) initialized
at z0 by ϕz : (z0, t) 7→ ϕz (z0, t). For a function such as
P : Rn → R, we denote its sublevel sets by UαP = {x ∈
Rn|P (x) ≤ α}. For a set such as M ⊂ Rn, we denote its
equidistant neighborhood by U εM = {x ∈ Rn|d (x,M) ≤
ε}, where, here, d is the infimal Euclidean distance of x to
all points in M . Given a vector field f : Rn → Rn and a
differentiable function P : Rn → R, the Lie derivative of P
along f is Lf P : Rn → R, x 7→ ∇P (x) ·f (x). Throughout
the paper, U will be a neighborhood of M and whenever
we write intU , we refer to the interior of U whilst with
∂U , we mean its boundary. For two vector fields f , g,
[f, g] denotes the Lie bracket of vector fields. We adopt
terminology and results from Bhatia and Szegő (1970).
Although we deal with time-dependent vector fields, we
omit the dependence on the initial time t0 in the solutions
of the associated differential equations due to the fact that
all results hold uniformly in t0 (cf. Dürr et al. (2013)).



Structure of the Manuscript. We introduce all terminol-
ogy and auxiliary results that we require in section 2.
Thereafter, i.e. in section 3, we present our main results
on how to establish convergence guarantees despite drift.
We illustrate these results on the example of practical
stabilization of the unit sphere despite drift in section 4.
Section 5 concludes the manuscript.

2. PRELIMINARIES

The solution that we propose to solve the issue posed in
section 1 involves two main ingredients: gradient systems
and extremum seeking. We first review some results on gra-
dient systems and consequently repeat the fundamentals
of extremum seeking. A key ingredient will be the positive
definiteness of P with respect to the desired set M .

Definition 1. A continuously differentiable function P :
Rn → R is said to be positive definite with respect to
M on U , if U ⊂ Rn is a neighborhood of M ⊂ Rn, P
is positive on U \M , zero on M , regular on U \M , and
critical on M .

Having this definition at hand, we repeat a fundamental
result about gradient systems, that here only serves the
purpose of giving the intuition behind the fact that solu-
tions of (5) approach a neighborhood of M .

Proposition 2. (cf. (Hirsch et al., 2004, Sections 9.2f) ). If
P is positive definite with respect to M on U and M is
compact, then M is an asymptotically stable invariant set
of (3) and for every α ∈ (0,∞) such that UαP ⊂ U and UαP
is compact, UαP is a subset of the region of attraction of
M .

Now, guided by the intuition from perturbation theory (cf.
Brauer (1966)), we know that solutions of (5) must stay
close to solutions of (3) and thus approach a neighborhood
of M whose size can be rendered arbitrarily small by
appropriate choice of k. This technique was proposed by
Montenbruck et al. (2015). Classically, perturbation theory
assumes f = ε constant, whereas, herein, f is allowed to
be a vector field.

Lemma 3. If P is positive definite with respect to M on U ,
M is compact, and f is continuous on U , then, for every
α ∈ (0,∞) such that UαP ⊂ U and UαP is compact, for
every ε ∈ (0, d (M,∂UαP )), there exists a k0 ∈ (0,∞) such
that for every k ∈ (k0,∞), U εM contains an asymptotically
stable invariant set of (5) which is also a uniform attractor,
and whose region of attraction is a superset of UαP .

Proof. The Lie derivative of P along Z is given by
LZ P (z) = ∇P (z) · f (z)− k∇P (z) · ∇P (z). Choose any
α ∈ (0,∞) such that UαP is compact and UαP ⊂ U . As
P is positive definite with respect to M on U , for every
α ∈ (0,∞) such that UαP is compact and UαP ⊂ U , for
any ε ∈ (0, d (M,∂UαP )), there exists δ ∈ (0, α) such that
UδP is a subset of U εM . It is then true that UαP \ intUδP
is a compact, nonempty set. As f is continuous and P is
continuously differentiable, ∇P · f assumes its maximum
on UαP \ intUδP , which we denote by fαδ . It follows that for
all z ∈ UαP \ intU δP , LZ P (z) ≤ fαδ − k∇P (z) · ∇P (z).
As P is continuously differentiable and positive definite
with respect to M on U , for every α ∈ (0,∞) such that
UαP is compact and UαP ⊂ U , ∇P (z) · ∇P (z) assumes

its positive minimum on UαP \ intUδP , which we denote
by pαδ . It follows that LZ P

(
UαP \ intUδP

)
≤ fαδ − kpαδ .

Setting k0 = fαδ /p
α
δ , we have that for any k ∈ (k0,∞),

LZ P
(
UαP \ intUδP

)
< 0, letting us conclude that U δP is

an invariant set of (5). Now define a function as being
P − δ outside UδP and to be zero inside UδP . This function
is continuous and its Lie derivative along Z outside UδP
equals LZ P . By Lyapunov’s direct method, it follows
that UδP is an asymptotically stable invariant set of (5).
Moreover, as we have LZ P

(
UαP \ intU δP

)
< 0, we know

that UαP is an invariant set. It follows from LaSalle’s
invariance principle that UαP is a subset of the region of
attraction of UδP . This concludes the proof. 2

We now repeat some fundamental concepts of extremum
seeking, mostly taken from Dürr et al. (2013).

For doing so, define

ξ̇ = b0 (ξ) +

m∑
j=1

bj (ξ)
√
ωvj (ωt) (7)

and

ζ̇ = b0 (ζ) +

m∑
j=1
k=j+1

[bj , bk] (ζ) ηkj (8)

with

ηkj =
1

T

∫ T

0

vk (θ)

∫ θ

0

vj (τ) d τ d θ. (9)

Here and henceforth, let ϕξ : (ξ0, t) 7→ ϕξ (ξ0, t) denote the
solution of (7) initialized at ξ0 and ϕζ : (ζ0, t) 7→ ϕζ (ζ0, t)
denote the solution of (8) initialized at ζ0. With these
auxiliary systems, we repeat two basic results in extremum
seeking.

Lemma 4. ((Dürr et al., 2013, Theorem 1)). For all i, let
vi be T -periodic with zero average. For all i, let bi be
twice continuously differentiable. If there exists B ⊂ Rn
such that there exists κ ∈ (0,∞) such that for all ζ0 ∈ B,
for all t ∈ [0,∞), ‖ϕζ (ζ0, t)‖ < κ, then for every bounded
K ⊂ B, for every D ∈ (0,∞), for every tf ∈ (0,∞), there
exists ω0 ∈ (0,∞) such that for all ω ∈ (ω0,∞), for every
ζ0 ∈ K, for all t ∈ [0, tf], d (ϕζ (ζ0, t) , ϕξ (ζ0, t)) < D.

Definition 5. A set S is said to be an ω-practically uni-
formly asymptotically stable set of (7), if, for every ε ∈
(0,∞), there exists δ ∈ (0,∞) and ω0 ∈ (0,∞) such that
for all ω ∈ (ω0,∞), for all t ∈ [0,∞), for all ξ0 ∈ U δS ,
ϕξ (ξ0, t) ∈ U εS , and if there exists δ ∈ (0,∞) such that for
every ε ∈ (0,∞), there exists tf ∈ [0,∞) and ω0 ∈ (0,∞)
such that for all ω ∈ (ω0,∞), for all t ∈ [tf,∞), for all
ξ0 ∈ UδS , ϕξ (ξ0, t) ∈ U εS .

Lemma 6. For all i, let vi be T -periodic with zero average.
For all i, let bi be twice continuously differentiable. If a
compact set S is an asymptotically stable invariant set
of (8), then it is a ω-practically uniformly asymptotically
stable set of (7).

The lemma resembles (Dürr et al., 2013, Theorem 2) and
differs from (Dürr et al., 2013, Theorem 2) only by its
stability definition. Namely, in contrast to the lemma,
which presumes S to be asymptotically stable, (Dürr et al.,
2013, Theorem 2) requires S to be an asymptotically stable
uniform attractor.



Definition 7. If S is an attractor of (5) and for every δ > 0,
for every compact subset K of the region of attraction of
S, there exists tf ≥ 0 such that for all t ∈ (tf,∞), for
all z0 ∈ K, ϕz (z0, t) ∈ UδS , then S is called an uniform
attractor of (5).

The proof of Lemma 6 thus requires the following lemma.

Lemma 8. ((Bhatia and Szegő, 1970, Theorem V.1.16)). If
S is a compact and asymptotically stable invariant set of
(5), then S is a uniform attractor of (5).

Proof of Lemma 6. The lemma follows from (Dürr et al.,
2013, Theorem 2) after application of Lemma 8. 2

3. MAIN RESULT

We solve the problem from section 1 via a two-step
procedure. In particular, we first find sufficiently large
k such that solutions of (5) approach the minima of P
such as solutions of (3) do. This is done by application of
Lemma 3. We second use extremum seeking in order to
bring (4) to the form of (7) and to hence keep its solutions
in proximity of solutions of (5), which has the form of (8)
by finding sufficiently large ω. This is done by application
of Lemmata 4 and 6.

In this spirit, we propose a function

u(k,ω) : R× R→ Rn, (10)

parameterized by (k, ω) ∈ (0,∞)
2

to solve the problem
from section 1. More particular, let

u(k,ω) (P (x) , t) =
n∑
i=1

ei

(
P (x)

√
iω sin (iωt)− 2k

√
iω cos (iωt)

)
(11)

with e1, . . . , en being orthonormal vectors of Rn that
satisfy span{e1 · · · en} = Rn. With this choice of u at hand,
we are able to state our main results.

Our first result regards reachability of every (arbitrarily
small) proximity of M by choosing sufficiently large k, ω.

Theorem 9. If P is positive definite with respect to M on
U , M is compact, and f is twice continuously differen-
tiable, then, for every α ∈ (0,∞) such that UαP ⊂ U and
UαP is compact, for every ε ∈ (0, d (M,∂UαP )), there exists
a k0 ∈ (0,∞) such that for every k ∈ (k0,∞) and for every
tf ∈ (0,∞) there exists an ω0 ∈ (0,∞) such that for every
ω ∈ (ω0,∞) and for every x0 ∈ UαP , ϕx (x0, tf) ∈ U εM .

Proof. For any compact UαP ⊂ U , choose some ε ∈
(0, d (M,∂UαP )). Now choose D < ε. By virtue of Lemma 3,
there exists a k0 ∈ (0,∞) such that for every k ∈ (k0,∞),

U ε−DM contains an asymptotically stable invariant set of
(5), which we denote by S, whose region of attraction is a
superset of UαP .

Now, as M is compact, U ε−DM is compact, and thus, S

is compact. Define δ = d
(
S, ∂U ε−DM

)
(such a δ exists by

virtue of the aforementioned compactnesses).

As UαP is compact, and as it is moreover a superset of the
region of attraction of S, it follows from Lemma 8, that
there exists t′f such that for all t ∈ (t′f,∞), for all z0 ∈ UαP ,
ϕz (z0, t) ∈ U δS . By our very choice of δ, we moreover have

that UδS ⊂ U
ε−D
M .

Next, let k be fixed but greater than the above k0. We
consider (4) under (11) which is

ẋ = f (x) +

n∑
i=1

eiP (x)
√
iω sin (iωt)− 2kei

√
iω cos (iωt) .

We now see that (3) can be written in the form (7) by
setting m = 2n and identifying b0 = f , b2i−1 = eiP , b2i =
2kei, i = 1, . . . , n. The corresponding Lie bracket system
(8) then coincides with (5) which is due to the fact that the
frequencies of the perturbations sin and cos are different.
Then we have ϕz = ϕζ and ϕx = ϕξ with the property that
for all i, vi is T -periodic and has zero average. Now choose
any tf ∈ (t′f,∞). As there exists B ⊂ Rn such that for
all z0 ∈ B, ϕζ (ζ0, t) = ϕz (z0, t) is uniformly bounded on
[0,∞), namely B = UαP , application of Lemma 4 yields
ω0 ∈ (0,∞) such that for all ω ∈ (ω0,∞), for every
x0 ∈ UαP , for all t ∈ [0, tf], d (ϕx (x0, t) , ϕz (x0, t)) < D.
As we had shown before that for all t ∈ (t′f,∞), for all

z0 ∈ UαP , ϕz (z0, t) ∈ U ε−DM , and as tf > t′f, this reveals
that for all x0 ∈ UαP , ϕx (x0, tf) ∈ U εM , which was to be
proven. 2

Our second result states that every (arbitrarily small)
neighborhood ofM contains ω-practically uniformly asymp-
totically stable sets when choosing sufficiently large k.

Theorem 10. If P is positive definite with respect to
M on U , M is compact, and f is twice continuously
differentiable, then, for every α ∈ (0,∞) such that UαP ⊂ U
and UαP is compact, for every ε ∈ (0, d (M,∂UαP )), there
exists a k0 ∈ (0,∞) such that for every k ∈ (k0,∞), U εM
contains an ω-practically uniformly asymptotically stable
set of (4).

Proof. Application of Lemma 3 reveals that for every
compact UαP ⊂ U , for every ε ∈ (0, d (M,∂UαP )), there
exists a k0 ∈ (0,∞) such that for every k ∈ (k0,∞),
U εM contains an asymptotically stable invariant set of (5),
which we denote by S. We now see that (3) can be written
in the form (7) by setting m = 2n and identifying b0 = f ,
b2i−1 = eiP , b2i = 2kei, i = 1, . . . , n. The corresponding
Lie bracket system (8) then coincides with (5) which is due
to the fact that the frequencies of the perturbations sin
and cos are different. Then we have ϕz = ϕζ and ϕx = ϕξ
with the property that for all i, vi is T -periodic and has
zero average. By virtue of Lemma 6, S is an ω-practically
uniformly asymptotically stable set of (4). This concludes
the proof. 2

In both results, we rely on the existence of some positive
α such that UαP ⊂ U and UαP is compact. The results of
Wilson (1967) would shed light on the existence of such α
for the case that M be a compact submanifold of Rn. For
the sake of self-containedness, we yet also include such an
existence result here for rather general compact M .

Proposition 11. (cf. (Bhatia and Szegő, 1970, Theorem
VIII.2.5)). Let P : U → R be continuously differentiable
with U ⊂ Rn open and let M ⊂ U be compact. Let P be
positive definite with respect toM on U . Then, there exists
a δ0 > 0 such that intUδ0M ⊂ U and for all δ ∈ (0, δ0), there

exists an α > 0 such that (UαP ∩ U
δ0
M ) ⊂ U δM . Moreover, if

U = Rn, then UαP ∩ U
δ0
M is a compact, isolated component

of UαP .



Proof. First, choose some δ0 > 0 such that U δ0M ⊂ U ,
which exists due to the fact that M ⊂ U , M is compact
and U is open.

Second, we show that for all δ ∈ (0, δ0) there exists an

α > 0 such that UαP ∩ U
δ0
M ⊂ U δM . Suppose for the sake of

contradiction that there exists a δ ∈ (0, δ0) such that for

all α > 0 there exists an x ∈ UαP ∩ U
δ0
M such that x 6∈ U δM .

Then define a sequence (αn)n∈N such that αn > 0 and

αn → 0. For each of the αn there exists a xn ∈ UαnP ∩U
δ0
M

such that xn 6∈ UδM . Now, since Uδ0M is bounded, by the
Bolzano-Weierstrass theorem, there exists a subsequence
(xnk)k∈N such that xnk → x∞ for some x∞ ∈ Uδ0M .
However, by continuity of P , we have on the one hand
that

lim
k→∞

P (xnk) = P

(
lim
k→∞

xnk

)
= P (x∞) (12)

and on the other hand

lim
k→∞

P (xnk) ≤ lim
k→∞

αnk = 0, (13)

thus x∞ ∈M . By convergence, there exists a k0 ∈ N such
that for all k ≥ k0 we have that ‖xnk − x∞‖ ≤ δ

2 , which

leads to the contradiction xnk ∈ U
δ/2
M , thus proving the

claim.

Third, let U = Rn. We observe that since P is continuous,
UαP is closed for all α > 0 (Rudin, 1964, Corollary of

Theorem 4.8). Now, since δ < δ0 we have that UαP ∩U
δ0
M is

bounded and hence compact. In particular, since δ < δ0,
there exists a δ1 ∈ (δ, δ0) such that

U
(δ1−δ)(
Uα
P
∩Uδ0

M

) ⊂ (UαP ∩ Uδ0M) , (14)

i.e., UαP ∩ U
δ0
M is an isolated component of UαP . This was

the last statement to be proven. 2

Together with this latter proposition, our main results
endow one with the ability to choose k and ω appropriately
in order to not only let solutions of (4) under (11) reach
arbitrarily small neighborhoods of M , but also to remain
there in a practically stable fashion. This solves the control
problem from section 1.

Our approach has potential application in problems where
f is unknown, but parametrized by a bounded parameter,
which we term “robust” extremum seeking. In particular,
assume that f is subject to a parametric uncertainty,
i.e. that f is parameterized via a parameter µ ∈ Rm,
f (x) = f (x, µ). If f is continuous in µ and µ is restricted
to a compact set ∆ ⊂ Rm, then it is possible to replace fαδ
in the proof of Lemma 3 by

max
z∈UαP \intUδP

µ∈∆

∇P (z) · f (z, µ) =: fαδ,∆. (15)

This lets one obtain an overestimate

k0 =
fαδ,∆
pαδ

(16)

which is valid for any µ ∈ ∆.

Let ϕx,µ : (x0, t) 7→ ϕx,µ (x0, t) denote the solution of

ẋ = f (x, µ) + u (P (x) , t) , (17)

initialized at x0, for some particular µ ∈ P .

In this setting, it is possible to recast our main results for
the robust extremum seeking problem.

Following the course of Theorem 9, we infer that for every
α ∈ (0,∞) such that UαP ⊂ U and UαP is compact, for
every ε ∈ (0, d (M,∂UαP )), there exists a k0 ∈ (0,∞) such
that for every k ∈ (k0,∞), for every tf ∈ (0,∞), and every
µ ∈ ∆, there exists an ω0 ∈ (0,∞) such that for every
ω ∈ (ω0,∞) and for every x0 ∈ UαP , ϕx,µ (x0, tf) ∈ U εM .

Following the course of Theorem 10, we further have that
for every α ∈ (0,∞) such that UαP ⊂ U and UαP is compact,
for every ε ∈ (0, d (M,∂UαP )), there exists a k0 ∈ (0,∞)
such that for every k ∈ (k0,∞), for every µ ∈ ∆, U εM
contains an ω-practically uniformly asymptotically stable
set of (17).

4. EXAMPLE: THE UNIT CIRCLE

In this example, we apply our above approach to practical
stabilization of the unit sphere

S1 =
{
x ∈ R2| ‖x‖ = 1

}
(18)

(i.e. n = 2 and M = S1) despite drift. Stabilization of the
unit sphere is, for instance, relevant in artificial pattern
generators. To apply our findings to this problem, we need
to define a potential function which is positive definite with
respect to S1 on R2 \ {0}, for instance

P : x 7→ −1

2
‖x‖2 +

1

3
‖x‖3 +

1

6
. (19)

The function P is plotted in Fig. 1.

In this example, we shall be concerned with the exemplary
drift vector field

f :

[
x1

x2

]
7→
[
x1 ‖x‖ − x2

x2 ‖x‖+ x1

]
(20)

under which S1 is unstable for u = 0 and which will turn
out to be particularly suited for illustrating the two-step
tuning procedure that we proposed, i.e. that there exists
a k0 such that for any k ∈ (k0,∞) there exists an ω0 such
that for any ω ∈ (ω0,∞), solutions approach the desired
neighborhood U ε

S1 , but that it is not in general true that
for any k, there exists an ω0 such that for any ω ∈ (ω0,∞),
solutions approach the desired neighborhood U ε

S1 (simply
said, the two parameters can not be tuned independently).
Please note that this choice of f is not twice continuously
differentiable (one would have to exclude the origin to
obtain this property). We refer to Scheinker and Krstić
(2013b) for the extension of extremum seeking to such
vector fields and omit the technical discussion here.

We solved the differential equation (4) under the ex-
tremum seeking feedback (11) numerically in Matlab
using ode45 for different values of k and ω and depict the

resulting numerical approximation of ϕx for x0 = [2 2]
>

in
Fig. 2. The simulation reveal that for k = 2, increasing ω
results in a decrease of ε, as expected. For k = 1, however,
ε can not be rendered small by choice of ω. This illustrates
that first a sufficiently large k (here it is k ∈ (1,∞)) must
be found before ω can be adjusted in order to decrease ε
as desired; it is yet not true that the latter tuning of ω is
feasible for any choice of k (here e.g. not for k = 1).
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Fig. 1. Plot of the function P as in (19), which is positive
definite with respect to S1 on R2 \ {0}
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Fig. 2. Numerical approximations of the solutions ϕx to
(4) under the extremum seeking feedback (11) for
different choices of k and ω for M being the unit
sphere S1

5. CONCLUSION

We studied convergence properties of extremum seeking
controllers which are subject to drift. In order to cope with
such issues, we presented a framework in which we could
bring the solutions of the controlled system arbitrarily
close to the minima of a given potential function despite
the drift vector field. Our approach can be applied to
robust extremum seeking problems in which the drift
vector field is unknown but contained in a compact set, for
instance when the drift vector field contains a uncertain
parameter. We illustrated our findings on a numerical
example in which we practically stabilized the unit sphere.
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