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Abstract— We study backstepping controllers whose goal it
is to navigate a mechanical system to a submanifold of its
generalized positions under the circumstance that a drift vector
field appears in the closed loop due to unmodeled dynamics. We
not only derive conditions under which the desired submanifold
remains asymptotically stable despite drift, but also provide re-
sults on overestimating the navigation function along solutions,
such that obstacle avoidance can be guaranteed despite drift.

I. INTRODUCTION

We are concerned with backstepping controllers (cf. [2,
Section 6.1]) for mechanical systems in the case when an
unknown vector field governs the (generalized) velocities,
i.e. when a drift vector field appears in the vector field of
the closed loop. More particular, we treat the case where the
backstepping controller was designed in order to let the (gen-
eralized) positions follow the solutions of a gradient system
for some appropriately defined potential function vanishing
on a submanifold of the state space. This is desirable in
many mechanical systems, e.g. when a navigation or obstacle
avoidance problem is to be solved [3]. In this latter context,
the potential function is also called a (robot) navigation
function.

The problem of unknown velocity vector fields is usually
solved using adaptive control laws or nonlinear gains [4]–
[7]. In contrast to these works, as we focus on the case
where the backstepping controller was designed in order to
let the vector field governing the positions take the form
of a gradient vector field for some appropriately defined
navigation function, we aim to give guarantees on the
decrease of the navigation function despite the unknown
velocity vector field. This approach bares similarities with
the comparison principle [8] (in the sense of overestimating
a scalar function by a known function for all times) as well as
with the perturbation method [9] (in the sense of exploiting
the similarity of solutions of perturbed and unperturbed
vector fields). Moreover, we extend previous results from
singletons to submanifolds.

In particular, we will present a controller design method
where a drift vector field in the velocities may be ignored
during controller design, i.e. we draw conclusions from the
knowledge of the system without drift to the system with
drift.
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For drift vector fields which are locally Lipschitz continu-
ous, our controller design method is able to attain asymptotic
stability of the same invariant submanifold for the system
with drift as for the system without drift. Moreover, the
proposed method guarantees a decrease of the navigation
function of the system with drift in comparison with the
navigation function of the system without drift.

Structure of the Paper: We formalize the problem state-
ment in section II. In section III, we review results for
backstepping controllers without drift and in section IV,
we show that these results extend to practical asymptotic
stability for continuous drift. Thereafter, in section V, we
prove that it is possible to attain asymptotically stable even
in the presence of drift. We give a guarantee on the decrease
of the navigation function for the system with drift in section
VI and illustrate the proposed method on the example of an
obstacle avoidance problem in a terrain with unknown height
map in section VII. The paper concludes with section VIII.

Notation: Given a function P : Rn → R, U α
P = {x ∈

Rn|P (x) ≤ α}. When P is differentiable, ∇P : Rn → Rn
denotes the unique vector field satisfying ∇P (x) · v =

limh→0
P (x+hv)−P (x)

h for all v, where · is the inner product.
Accordingly, when we write ∇2P : Rn → Rn×n, we
mean the function which has the result of the application
of ∇ to the ith element of ∇P as its ith row. When M
is a subset of Rn and x is an element of Rn, we mean
infy∈M ‖x− y‖ when we write d (x,M ). We denote U α

M =
{x ∈ Rn|d (x,M ) ≤ α}. If we write P (M ) = 0 (> 0),
we mean that for all x ∈ M , P (x) = 0 (> 0). For the
submanifold M of Rn, r : T → M denotes the smooth
retraction from the tubular neighborhood T of M onto
M (all presented results are implicitly restricted to tubular
neighborhoods of M ). Given a function f : Rn → Rn, we
denote the Lie derivative of P along f by Lf P : Rn → R,
Lf P (x) = ∇P (x)·f (x). ẋ = f (x) represents a differential
equation and we expect that f is defined such that the
solution φ : Rn × (−ε, ε) → Rn (the function satisfying
d
d tφ (x0, t) = f (φ (x0, t)), where x0 = φ (x0, 0) is the
initial condition) exists at least on (−ε, ε). For x ∈ Rn, we
write x2 to denote x · x.

II. PROBLEM STATEMENT

We are concerned with backstepping controllers for fully
actuated mechanical systems of the form[

ẋ
v̇

]
=

[
v

f (x, v) + ∆ (x) + F

]
. (1)



Therein, x are the (generalized) positions, v are the (general-
ized) velocities, f : Rn×Rn → Rn is the known part of the
velocity vector field, ∆ : Rn → Rn is the unknown part of
the velocity vector field, and F are the (generalized) forces
and torques. In particular, we are concerned with controllers
that were designed with the goal to let the x-dynamics take
the form of a gradient system for some navigation function
P : Rn → R. A suitable controller design procedure for this
class of problems is backstepping [2, Section 6.1]. Applying
backstepping with the aim to let x follow “ẋ = −k1∇P (x)”,
where k1 > 0 is the control gain, lets us define the error
e = ẋ+k1∇P (x), which we try to bring to zero. The time-
derivative of the error is given by ė = v̇+ k1∇2P (x) v and
we aim to let P (x) + 1

2e
2 decrease along solutions. This is

achieved if we set ė = −∇P (x)−k1e. Solving for v̇ yields
v̇ = −k1v − k1∇2P (x) v −

(
k2

1 + 1
)
∇P (x) and equating

this with v̇ = f (x, v) + F yields

F = −f (x, v)−
(
1 + k2

1

)
∇P (x)−k1v−k1∇2P (x) v. (2)

As ∆ is unknown, the closed loop attains the form[
ẋ
v̇

]
=

[
0

∆ (x)

]
−
[

v(
1 + k2

1

)
∇P (x) + k1v + k1∇2P (x) v

]
where we refer to [ 0

∆ ] as the drift vector field. The system
without drift (i.e. for ∆ = 0) takes the form[

ξ̇
η̇

]
=

[
η

−
(
1 + k2

2

)
∇P (ξ)− k2η − k2∇2P (ξ) η

]
,

where we have replaced k1 by k2 in order to distinguish
the two control laws. In the analysis of these systems, it is
convenient to define an error variable e = v+ k1∇P (x) (or
ζ = η+ k2∇P (ξ), respectively) to arrive at the formulation[

ẋ
ė

]
=

[
0

∆ (x)

]
+

[
e− k1∇P (x)
−∇P (x)− k1e

]
(3)[

ξ̇

ζ̇

]
=

[
ζ − k2∇P (ξ)
−∇P (ξ)− k2ζ

]
. (4)

Henceforth, we will refer to (3) as the system with drift
and to the right-hand side of (3) as X : R2n → R2n (i.e.
(ẋ, ė) =: X (x, e)), whereas we refer to (4) as the system
without drift (or also the nominal system) and to the right-
hand side of (4) as Z : R2n → R2n (i.e.

(
ξ̇, ζ̇
)

=: Z (ξ, ζ)).
We let φx ((x0, e0) , t) denote the solution of (3) in x and
φe ((x0, e0) , t) the solution of (3) in e with initial condition
(x0, e0), whereas φξ ((ξ0, ζ0) , t) denotes the solution of (4)
in ξ and φζ ((ξ0, ζ0) , t) the solution of (4) in ζ with initial
condition (ξ0, ζ0). Our goal is to conclude stability and
convergence properties of (3) from properties of Z.

III. THE NOMINAL CASE

In mechanical systems, it is often desirable to let the
positions φx follow the solution of a gradient system for
some a priori chosen navigation function P : Rn → R,
i.e. our goal is to use the backstepping controller to let the
closed loop (3) approximate “ẋ = −k1∇P (x)”. This goal
makes particular sense when φx is ought to converge to a
submanifold M ⊂ Rn w.r.t. which P is positive definite.

We will assume M to be a submanifold throughout the
paper, even when we do not state it explicitly (this will be
required in order to let the retraction onto M be smooth).

Definition 1 (Positive Definiteness): For a sufficiently
smooth function P : U → R, P is said to be positive
definite with respect to M ⊂ Rn on U ⊂ Rn, if M
is compact and connected, U is a neighborhood of M ,
P (M ) = 0 < P (U \M ), and ∇P (y) = 0⇔ y ∈M .

When P is chosen such that it is positive definite with
respect to M , the backstepping controller (2) renders the
submanifold

M × {0} =: N ⊂ (Rn × Rn) (5)

an asymptotically stable invariant set for the system without
drift (4), making φx converge to M . In the following, let
V : Rn × Rn → R denote

V (ξ, ζ) = P (ξ) +
1

2
ζ2. (6)

Proposition 1 ((cf. [2])): If P is positive definite with
respect to M on U and k2 > 0, then N is an asymptotically
stable invariant set of (4). Moreover, ∀α > 0 such that
U α
V ⊂ U ×Rn, U α

V is a subset of the region of asymptotic
stability of N .

Proof: Because ∇P (ξ) = 0 ⇔ ξ ∈ M , N is an
invariant set of (4). Further, by definition, M is compact.
Now consider the function (6). V is continuously differ-
entiable, maps a neighborhood of N to R, and satisfies
∀ζ 6= 0 : V (U \M , ζ) > 0 as well as V (M , 0) = 0.
Next, substituting Z, we have

LZ V (ξ, ζ) = −k2 (∇P (ξ))
2 − k2e

2. (7)

Thus, V satisfies LZ V (ξ, ζ) = 0 ⇔ ∇P (ξ) = 0, ζ = 0.
Because P is positive definite with respect to M , thus,
∀ζ 6= 0 : LZ V (U \M , ζ) < 0 and LZ V (M , 0) =
0. Consequently, applying Lyapunov’s direct method and
LaSalle’s invariance principle, the lemma is proven.

Having this result for the system without drift (4) at hand,
it is desirable to derive conclusions about the convergence
properties of the system with drift (3).

IV. PRACTICAL ASYMPTOTIC STABILITY AND DRIFT

Our goal is to let φx converge to M , i.e. to let N be an
asymptotically stable invariant submanifold of (3), just as it
was the case for (4). However, without further assumptions,
we may only achieve practical stability,

Definition 2 (Practical Stability): A non-empty compact
set M is said to be a k-practically asymptotically stable set
of ẏ = Yk (y), with Yk : Rn → Rn, where k is a parameter,
if for every α > 0, there exists a k > 0, such that U α

M

contains an asymptotically stable set of ẏ = Yk (y).
Having the convergence properties of (4) at hand, we can

conclude practical convergence properties of (3). This bares
similarities with the perturbation method [9] in the sense
that the solutions to the system with drift stay “close” to the
solutions to the system without drift.



Proposition 2: If P is positive definite with respect to
M on U and ∆ is continuous, then N is a k1-practically
asymptotically stable set of (3).

Proof: Consider the function (6). Its Lie derivative
along X is given by

LX V (x, e) = −k1 (∇P (x))
2 − k1e

2 + e ·∆ (x) . (8)

Now, introduce θ ∈ (0, 1) to rewrite the latter as

LX V (x, v) =− k1 (1− θ) (∇P (x))
2 − k1 (1− θ) e2

− k1θ (∇P (x))
2 − k1θe

2 + e ·∆ (x) .

Let us define the function G (x, e) as

G (x, e) = −k1θ (∇P (x))
2 − k1θe

2 + e ·∆ (x) (9)

and see that for e 6= 0, G (x, e) ≤ 0 implies LX V (U \
M , e) < 0 and LX V (M , 0) = 0 by application of
Proposition 1, as P is positive definite with respect to M
on U . By the inequality of Cauchy-Schwarz,

‖∆ (x)‖ ‖e‖ ≤ θk1

(
(∇P (x))

2
+ e2

)
(10)

implies G (x, e) ≤ 0. Now note that, because P is positive
definite with respect to M on U , as long as (x, e) /∈ N , for
every (x, e) ∈ U ×Rn, we can find a k1 such that (10) holds
true. More, the dependency of this k1 on (x, e) is continuous,
since ∆ is continuous and P is continuously differentiable.
Thus, for every compact set C such that C∩N = ∅ and C ⊂
U ×Rn, for every (x, e) ∈ C, we may find an overestimate
for the left-hand side of (10) and an underestimate for the
right-hand side of (10), such that there exists a k1 to let (10)
hold true. Now choose α > 0. As P is positive definite with
respect to M , it is possible to find a β such that U β

V ⊂ U α
N .

Next, choose γ ≥ β such that U α
N ⊂ U γ

V . With this at
hand, C = U γ

V \U
β
V is a compact set such that C∩N = ∅.

Therefore, it is possible to find k1 such that for all (x, e) ∈ C,
(10) holds true. By the invariance of sublevel sets, U γ

V and
U β
V are both invariant. By LaSalle’s Invariance Principle, this

lets U β
V be asymptotically stable. Moreover, U β

V ⊂ U α
N ,

which was to be proven.
It is natural to ask for sufficient conditions to let the region

of (practical) asymptotic stability from the forgoing propo-
sition extend arbitrarily (semi-globally). One such sufficient
condition is radial unboundedness of P (with respect to M ).

Definition 3 (Semi-Global Practical Asymptotic Stability):
A non-empty compact set M ⊂ Rn is said to be a U -
semi-globally k-practically asymptotically stable set of
ẏ = Yk (y), where k is a parameter, if for every α > 0, for
every β > α such that U β

M ⊂ U there exists a k > 0, such
that U α

M contains an asymptotically stable set of ẏ = Y (y)

and s.t. U β
M is a subset of its region of asymptotic stability.

Definition 4 (Radial Unboundedness): P is said to be
M -radially unbounded on U ⊂ Rn, if for every ε > 0 such
that U ε

M ⊂ U , there exists a δ > 0, such that U ε
M ⊂ U δ

P .
Under the assumptions of the forgoing proposition, with

the additional assumption of radial unboundedness of P , it
is possible to render N a semi-globally practically asymp-
totically stable invariant set.

Corollary 1: If P is positive definite with respect to M on
U , P is M -radially unbounded on U , and ∆ is continuous,
then, for every γ such that U γ

P ⊂ U , N is a U γ
P × Rn-

semi-globally k1-practically asymptotically stable set of (3).
Proof: The proof is along the lines of the proof of

Proposition 2. Thus, reconsider (10). Again, because P is
positive definite with respect to M on U , as long as (x, e) /∈
N , for every (x, e) ∈ U × Rn, we can find a k1 such that
(10) holds true and the dependency of this k1 on (x, e) is
continuous, since ∆ is continuous and P is continuously
differentiable. Thus, for every compact set C such that C ∩
N = ∅ and C ⊂ U × Rn, for every (x, e) ∈ C, we may
find an overestimate for the left-hand side of (10) and an
underestimate for the right-hand side of (10), such that there
exists a k1 to let (10) hold true. To construct such a set
C, choose α > 0 and β > α. As P is positive definite with
respect to M , it is possible to find a γ such that U γ

V ⊂ U α
N .

As P is M -radially unbounded, we may find a δ such that
U β

N ⊂ U δ
V . With these values at hand, C = U δ

V \U γ
V is a

compact set such that C ∩N = ∅. Therefore, it is possible
to find a k1 such that for all (x, e) ∈ C, (10) holds true.
By the invariance of sublevel sets, the sets U γ

V and U δ
V are

both invariant. By Lyapunov’s direct method and LaSalle’s
invariance principle, this lets U γ

V be asymptotically stable,
with U δ

V being a subset of its region of asymptotic stability.
Moreover, U γ

V ⊂ U α
N and U β

N ⊂ U δ
V , which was to be

proven.

V. ASYMPTOTIC STABILITY AND DRIFT

In the previous section, we have shown that it is possible
to conclude practical asymptotic stability of N of (3) from
the assumptions that were sufficient for asymptotic stability
of N of (3) (plus continuity of ∆). It appears natural to
ask for sufficient conditions on ∆ to conclude asymptotic
stability of N for (3). For doing so, we employ additional
smoothness assumptions on ∆.

A. One-Sided Lipschitz Continuous Drift

First, we assume ∆ to suffice the one-sided Lipschitz
continuity property to later show that this can be relaxed
to only requiring ∆ to be locally Lipschitz continuous.

Definition 5 (One-Sided Lipschitz Continuity): f is said
to be (q)-one-sided Lipschitz continuous on U , if ∃q :
∀a, b ∈ U : (a− b) · (f (a)− f (b)) ≤ q (a− b)2.

Further, we will require strong convexity of P (with
respect to M ). When P is positive definite with respect
to M , this assumption guarantees (roughly speaking) that
−∇P never points away from M , i.e. that the angle en-
closed between ∇P (x) and x− r (x), where r denotes the
retraction from tubular neighborhoods onto M (defined via
the normal bundle), is acute (when M is a submanifold,
existence of tubular neighborhoods is ensured by the tubular
neighborhood theorem).

Definition 6 (Strong Convexity): P is said to be λ-
strongly convex with respect to M on U , if U is a neighbor-
hood of M and there exists a λ > 0, such that for all x ∈ U ,
(∇P (r (x))−∇P (x)) · (r (x)− x) ≥ λ (x− r (x))

2.



Lemma 1: Let N be an invariant submanifold of (3). If P
is positive definite with respect to M on U , P is λ-strongly
convex with respect to M on U , and [ 0

∆ ] is (q)-one-sided
Lipschitz continuous on U , then, for k1 > max{q,

(
q+1
2λ

)2},
N is an asymptotically stable invariant set of (3) and ∀α > 0
such that U α

V ⊂ U × Rn, U α
V is a subset of the region of

asymptotic stability of N .
Proof: Consider the function (6). Its Lie derivative

along X is given by

LX V (x, e) = −k1 (∇P (x))
2 − k1e

2 + e ·∆ (x) . (11)

From N being an invariant set of (3), as ∇P (x) = 0 ⇔
x ∈ M , it follows that ∆ (r (x)) = 0, where r denotes the
smooth retraction onto M . Thus, we may write

e ·∆ (x) = e · (∆ (x)−∆ (r (x))) (12)

=

[
x− r (x)

e− k1∇P (x) + k1∇P (x)

]
·
[

0
∆ (x)−∆ (r (x))

]
.

As, by assumption, [ 0
∆ ] is (q)-one-sided Lipschitz contin-

uous on U , we may thus overestimate the latter equation
by

e ·∆ (x) ≤ q (x− r (x))
2

+ qe2. (13)

Substituting this into our expression for LX V (x, e), we
arrive at

LX V (x, e) ≤ −k1 (∇P (x))
2−k1e

2 +q (x− r (x))
2
+qe2.

We further have that

k1 (∇P (x))
2
+2
√
k1∇P (x)·(x− r (x))+(x− r (x))

2 ≥ 0

and hence also

−k1 (∇P (x))
2 ≤2

√
k1∇P (x) · (x− r (x)) + (x− r (x))

2

= −2
√
k1∇P (x) · (r (x)− x) + (x− r (x))

2
.

Resubstitution yields

LX V (x, e) ≤− k1e
2 − 2

√
k1∇P (x) · (r (x)− x)

+ q (x− r (x))
2

+ qe2 + (x− r (x))
2
.
(14)

By assumption, P is λ-strongly convex with respect to M
on U , such that we have

LX V (x, e) ≤ (q − k1) e2 +
(
q − 2λ

√
k1 + 1

)
(x− r (x))

2

(15)
after reordering. Choosing k1 > max{q,

(
q+1
2λ

)2} yields
LX V (x, e) ≤ 0. As (x− r (x))

2 is positive definite with
respect to M on U , we moreover have ∀e 6= 0 :
LX V (U \M , e) < 0 and LX V (M , 0) = 0. Applying
Lyapunov’s direct method and LaSalle’s invariance principle
proves the claim.

B. Locally Lipschitz Continuous Drift

In the foregoing lemma, we have assumed the drift vec-
tor field [ 0

∆ ] to satisfy the one-sided Lipschitz continuous
property, yielding a precise lower bound for k1. A weaker
assumption is the notion of local Lipschitz continuity.

Definition 7 (Local Lipschitz Continuity): f is said to be
locally Lipschitz continuous on U ⊂ Rn, if for every x ∈
U , for all y in a neighborhood Ux of x, there exists a Lx,
such that (f (x)− f (y))

2 ≤ Lx (x− y)
2.

Lemma 2: If f is locally Lipschitz continuous on U , then
f is (q)-one-sided Lipschitz continuous on every compact
subset of U .

Proof: Choose a compact set C ⊂ U . Then ∪x∈CUx

is an open cover of C, i.e. C ⊂ ∪x∈CUx. As C is compact,
the open cover ∪x∈CUx has a finite subcover ∪x∈SUx, i.e.
there exists a finite S ⊂ C such that C ⊂ ∪x∈SUx. It is
thus possible to find a value L sufficing

L = max
x∈S

Lx (16)

such that for all x, y ∈ C,

(f (x)− f (y))
2 ≤ L (x− y)

2
. (17)

Next, note that

(f (x)− f (y))
2−2 (f (x)− f (y)) ·(x− y)+(x− y)

2 ≥ 0.

This yields

2 (f (x)− f (y)) · (x− y) ≤ (f (x)− f (y))
2

+ (x− y)
2
,

and, together with the Lipschitz inequality, we have

(f (x)− f (y)) · (x− y) ≤ L+ 1

2
(x− y)

2
, (18)

which is just the characterization of f being
(
L+1

2

)
-one-

sided Lipschitz continuous.
Lemma 3: If f is locally Lipschitz continuous on U , then[

0
f

]
is locally Lipschitz continuous on U .
Proof: As we have([

0
f (x)

]
−
[

0
f (y)

])2

= (f (x)− f (y))
2 (19)

and for every x ∈ U , for all y in a neighborhood Ux of x,
there exists a Lx, such that f satisfies

(f (x)− f (y))
2 ≤ Lx (x− y)

2
, (20)

we find that for every x ∈ U , for all y in a neighborhood
Ux of x, there exists a Lx, such that f satisfies([

0
f (x)

]
−
[

0
f (y)

])2

≤ Lx (x− y)
2
. (21)

This is just the characterization of
[

0
f

]
being locally Lips-

chitz continuous on U .
With the two foregoing lemmata, it is possible to relax

the assumption of [ 0
∆ ] being one-sided Lipschitz continuous

from Lemma 1 to only requiring ∆ to be locally Lipschitz
continuous.



Theorem 1: Let N be an invariant set of (3). If P is
positive definite with respect to M on U , P is λ-strongly
convex with respect to M on U , and ∆ is locally Lipschitz
continuous on U × Rn, then there exists a k0, s.t. for all
k1 > k0, N is an asymptotically stable invariant set of (3).

Proof: The proof is along the lines of the proof of
Lemma 1. In particular, we may pursue the prove in the
identical fashion up to (12). Now apply Lemma 3 to find that
[ 0
∆ ] is locally Lipschitz continuous on U ×Rn. By Lemma 2,

[ 0
∆ ] is (q)-one-sided Lipschitz continuous on every compact

subset C of U ×Rn. We choose a particular such subset to
be C = U α

V . In doing so, for all (x, e) ∈ C, it is possible
to get back to the proof of Lemma 1 until we arrive at (15).
Choosing k1 > max{q,

(
q+1
2λ

)
} yields LX V (C) ≤ 0. As

(x− r (x))
2 is positive definite with respect to M on U , we

moreover have LX V (C \N ) < 0 and LX V (M , 0) = 0.
As P is positive definite with respect to M on U , C is
a neighborhood of M × {0}. Applying Lyapunov’s direct
method proves the claim.

Just as in section IV, it is natural to ask for sufficient
conditions to let the region of asymptotic stability from the
foregoing theorem extend arbitrarily (semi-globally). Again,
radial unboundedness of P turns out to be such a condition.

Definition 8 (Semi-Global Asymptotic Stability): Let
φy (y0, t) solve ẏ = Yk (y), where k is a parameter. A
non-empty compact set M is said to be a U -semi-globally
asymptotically stable set of ẏ = Yk (y), if for every β > 0
such that U β

M ⊂ U there exists a k > 0, such that M is an
asymptotically stable set of ẏ = Y (y) and such that U β

M is
a subset of the region of asymptotic stability of M .

Theorem 2: Let N be an invariant submanifold of (3).
If P is positive definite with respect to M on U , P is λ-
strongly convex with respect to M on U , P is M -radially
unbounded on U , and ∆ is locally Lipschitz continuous on
U × Rn, then, for every γ such that U γ

P ⊂ U , N is a
U γ
P × Rn-semi-globally asymptotically stable set of (3).

Proof: The proof is along the lines of the proof of
Theorem 1. Precisely, choose β > 0 such that U β

M ⊂ U .
As P is M -radially unbounded on U , there exists an γ
such that U β

M ⊂ U γ
P . For every γ such that U γ

P ⊂ U , as
U γ
V ⊂ U γ

P × Rn, P is positive definite with respect to M
on U γ

V . Apply Lemmata 2 and 1 to find that
[

0
f

]
is (q)-

one-sided Lipschitz continuous on C = U γ
V . Then get back

to the proof of Theorem 1. Choosing k1 > max{q,
(
q+1
2λ

)
}

yields LX V (C) ≤ 0. As P is positive definite with respect
to M on C, we moreover have LX V (C \N ) < 0 and
LX V (M , 0) = 0. Using Lyapunov’s direct method and
LaSalle’s invariance principle, we know that for every δ ≤ γ,
U δ
V is a subset of the region of asymptotic stability of N .

By our construction, U β
N ⊂ U γ

V , making U β
N a subset of

the region of asymptotic stability of N . This was our claim.

VI. GUARANTEED DECREASE
OF THE NAVIGATION FUNCTION

The backstepping controller (2) was designed with the goal
to let P decrease along φx.

Although we have found sufficient conditions on k1 to let
V decrease along (φx, φe) in the previous section, it remains
to show that it is always possible to find a k1 such that
P (φx ((x0, e0) , t)) can be quantified. In particular, as (4)
represents the known dynamics, it is desirable to be able
to compare P (φx ((x0, e0) , t)) to P (φξ ((ξ0, ζ0) , t)). This
question bares similarities to the comparison principle [8]
in the sense of overestimating a scalar function by a known
function for all times.

Theorem 3: Let N be an invariant submanifold of (3).
If P is positive definite with respect to M on U1, P is λ-
strongly convex with respect to M on U1, and ∆ is locally
Lipschitz continuous on U1×Rn, then there exists a neigh-
borhood U2 of N such that for all (x0, e0) = (ξ0, ζ0) ∈ U2,
for every T > 0, there exists a k0 such that for all k1 ≥ k0, it
holds true that P (φx ((x0, e0) , T )) ≤ P (φξ ((ξ0, ζ0) , T )).

Proof: Using Theorem 1, we know that under the
assumptions of the theorem, there exists a k3 such that for all
k1 > k3, N is an asymptotically stable invariant set of (3).
Let U3 denote a subset of the region of asymptotic stability
of N . For all (x0, e0) ∈ U3, we have∫ T

0

V̇ (φx ((x0, e0) , τ) , φe ((x0, e0) , τ)) d τ

= V (φx ((x0, e0) , T ) , φe ((x0, e0) , T ))− V (x0, e0) .

As before, we have the overestimate (15) for the Lie deriva-
tive of V along X on every compact subset U2 ⊂ U3.
Substituting the solution, we arrive at the integral inequality∫ T

0

V̇ (φx ((x0, e0) , τ) , φe ((x0, e0) , τ)) d τ

≤
∫ T

0

(q − k1)φe ((x0, e0) , τ)
2

+
(
q − 2λ

√
k1 + 1

)
(φx ((x0, e0) , τ)− r (φx ((x0, e0) , τ)))

2
d τ. (22)

Now, for every P (φξ ((ξ0, ζ0) , T )), it is possible to choose
k0 such that∫ T

0

(q − k0)φe ((x0, e0) , τ)
2

+
(
q − 2λ

√
k0 + 1

)
(φx ((x0, e0) , τ)− r (φx ((x0, e0) , τ)))

2
d τ (23)

+V (x0, e0)− 1

2
φe ((x0, e0) , T )

2 ≤ P (φξ ((ξ0, ζ0) , T )) .

Hence, for every k1 ≥ k0, for all (x0, e0) in some
neighborhood U2 of N , we have P (φx ((x0, e0) , T )) ≤
P (φξ ((ξ0, ζ0) , T )), which was claimed.

Remark 1: In the light of Theorem 3, it appears natural
to ask for conditions to let U2 be arbitrarily large. It turns
out that the conditions of Theorem 2 are sufficient to let the
statement of Theorem 3 hold true for every U2 = U γ

P ×Rn
such that U γ

P ⊂ U1, along the lines of the proof of Theorem
2.

Remark 2: To let k0 suffice (23), or rather to compute
an upper bound for k0, it is possible to overestimate
1
2φe ((x0, e0) , T )

2 by V (x0, e0), as long as we choose k1 >

max{q,
(
q+1
2λ

)2}, since the latter guarantees that V decreases
along (φx, φe).



VII. NAVIGATION IN UNKNOWN TERRAIN

In navigation problems, particularly in obstacle avoidance
problem, it is desirable that the positions φx follow the
solution of the gradient system ẋ = −k∇φ (x) (cf. [3]),
where the so-called navigation function P = ϕ is designed
such that it has its minimum 0 at the target submanifold M
and its maximum 1 at the obstacles O . For our example, we
choose the obstacle O = {x ∈ R2| (x1 − π)

2
+ (x2 + π)

2
=

0.25} and the target submanifold M = {x ∈ R2|x1 = 0}.
The resulting navigation function is

ϕ (x) = x2
1

(
x4

1 + (x1 − π)
2

+ (x2 + π)
2 − 0.25

)−1/2

and we want to let the fully actuated vehicle[
ẋ
v̇

]
=

[
v

1
m (F − g∇E (x))

]
(24)

with mass m, gravity g, potential energy E, navigate such
that its positions approach M whilst avoiding O . Without
losing generality, let m = 1, g = 1. More, let the potential
energy E be determined by the unknown height map

E (x) = H (x) = h (1− cos (x2)) (1− cos (x1)) . (25)

Let F be given by the backstepping control law

F = −
(
1 + k2

)
∇ϕ (x)− kv − k∇2ϕ (x) v, (26)

aiming to let φx follow solutions of ẋ = −k∇φ (x) for
h = 0 (flat terrain). We however assume that the real value
for h is h = 10. Consequently, we simulate three scenarios
in MATLAB using ode45 . First, we simulate the system
without drift (flat terrain), i.e. h = 0 and k = 1; second,
we simulate the system with drift, i.e. h = 10 and k = 1;
third, we simulate the system with drift and adjusted control
gain, i.e. h = 10 and k = 10. Fig. 1 depicts a plot of ϕ ◦φx
versus t for all three scenarios and Fig. 2 depicts a plot of
the solution φx in the (x1, x2) plane for all three scenarios.
In the first scenario, φx approaches M and avoids O , which
shows that the controller is designed appropriately for the
system without drift. In the second scenario, φx approaches
O (i.e. collides with the obstacle) due to the drift vector
field. In the third scenario, φx approaches M and avoids O
despite the drift vector field. Moreover, for all t ≥ 0, we
have P ◦ φx ≤ P ◦ φξ, so that it is possible to assess the
navigation function of the system with drift by means of the
navigation function of the system without drift.

0 1 2 3 4 5
0

0.5

1

t

ϕ

Fig. 1. Plot of the value of ϕ (φx ((x0, e0) , t)) for h = 10, k = 10 (–
– –), h = 10, k = 1 (- - -), h = 0, k = 1 (——), and ϕ (x) for x being
at the boundary of the obstacle (——).

0 1 2 3
−4

−3

−2

x1

x
2

Fig. 2. Plot of the solution φx ((x0, e0) , t) for h = 10, k = 10 (– – –),
h = 10, k = 1 (- - -), h = 0, k = 1 (——) together with initial condition
x0 ( ), obstacle ( ), target submanifold M (——), and level sets of H
(——).

VIII. CONCLUSION

We considered control problems for mechanical systems
whose positions are ought to follow the solution to some
gradient system for an appropriately chosen navigation func-
tion vanishing on a submanifold. In particular, we were
considering the case where the closed loop is designed
via backstepping whilst ignoring an unknown vector field
governing the velocities, such that the vector field of the
closed loop contains a drift vector field. We studied whether
or not it is possible to guarantee convergence and stability for
the system with drift. We showed that for locally Lipschitz
drift vector fields and mild assumptions on the navigation
function, the answer is affirmative and merely necessitated
gain tuning. Moreover, we showed that it is always possible
to overestimate the navigation function of the system with
drift by the the navigation function of the system without
drift, which has natural application in obstacle avoidance
problems. Accordingly, we illustrated our findings with an
obstacle avoidance problem in an unknown height map.
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