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Abstract— We pose the image reconstruction problem for pic-
tures distorted by rolling shutter as an observability problem.
In particular, we study the observability properties of linear
systems of whom measurements are taken with a pixel-by-
pixel evaluation. We do not concentrate on the technical process
behind rolling shutter, but introduce and study it as a systems
theoretic property. Assuming recurrences in the time series of
pictures which we aim to reconstruct, we derive resonance-like
conditions for observability.

I. MOTIVATION

In digital imaging, active pixel sensors have become a
popular alternative to charge coupled devices for their ad-
vantages in “bloom” (i.e. having pixels nearby a light source
overexposed), power consumption, lag, manufacturing, on-
board image processing, scalability, and, most significantly,
(monetary) cost. Yet, those active pixel sensors make use of
complementary metal-oxide-semiconductors [1], which are a
source for “rolling shutter” (as opposed to “global shutter”),
a term referring to a pixel-by-pixel, or line-by-line readout
of pixel data.

Fig. 1. Distortion effects caused by rolling shutter [2]
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If pictures (or time series thereof) are recorded subject
to such rolling shutter, distortion effects may occur. The
following distortion effects are regularly noticed: “wobble”
a.k.a. “jello” (caused by moving the camera), “skew” (caused
by an object translating through the picture), “smear” (caused
by rotary motion of an object in the picture), and “partial
exposure” (caused by varying brightness during recording).
Two of these distortions, viz. “smear” and “skew” are de-
picted in the top and bottom, respectively, of Fig. 1 (taken
from [2]).

In the present paper, we ask whether “true” pictures
(or time series thereof) without such distortion effects can
be reconstructed from the pictures recorded with rolling
shutter. We assume that the pictures are generated by a linear
dynamical system, thereby emphasizing systems theoretical
aspects of that reconstruction problem, i.e.: we pose the
image reconstruction problem for pictures recorded subject
to rolling shutter in terms of an observability problem.

Our motivation is similar to the one of [3], but we try to
reconstruct the information which is lost in measurements by
virtue of a systems theoretical approach whereas the authors
of [3] interpolate the measurement data and then generate
velocity estimates therefrom (using the techniques from [4]).

II. INTRODUCTION

We study linear dynamical systems of the form

xk+1 = Axk, (1)

with A ∈ Rn×n, of which the measurements

y1 = x1,1 (2)
y2 = (x1,1, x2,2) (3)
y3 = (x1,1, x2,2, x3,3) (4)

...
yn = (x1,1, x2,2, x3,3, . . . , xn,n) (5)

yn+1 = xn+1,1 (6)
yn+2 = (xn+1,1, xn+2,2) (7)

...

are taken, wherein xk,j denotes the jth entry of xk. If xk is
the picture under scrutiny at time k and xk,j is the value of
its jth pixel, with n overall pixels in the picture, then this
system models the premises of cameras with rolling shutter,
where pixel by pixel (or line by line) is evaluated, and thus
each pixel is associated with a different time instance of the
system the camera shall observe. This premise is depicted in
Fig. 2.



Therein, a picture, say an advertisement on an electric
display, changes as time proceeds, as illustrated in the left
column of Fig. 2. In the right column, the picture is recorded
with a rolling shutter camera, i.e. pixel by pixel is evaluated,
and hence every pixel belongs to a different time instance
of the dynamical system describing the evolution on the
left-hand side. Here, A would be a permutation matrix and
xk would be the vector containing integers, each of which
would be associated with one of the 9 portions of the picture,
“pixels”, at time k. In an observability problem, our goal is
to reconstruct the (complete) initial condition x0 of (1) from
the measurements (2)-(7). Knowing A, this is equivalent to
asking whether we can reconstruct the pictures on the left of
Fig. 2 from the measurements on the right.
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Fig. 2. Rolling shutter effect

III. PROBLEM STATEMENT

We study the observability problem for systems of the
form (1) with measurements of the form (2)-(7), i.e. to
reconstruct the initial condition x0 of our dynamical system
from the data (yk)k∈N. Thereby, we do not lose generality
if we model our measurement by

yk = e1+(k−1)modn · xk, (8)

wherein ei ∈ Rn denotes the ith vector of the standard basis,
as its information content is the same as in (2)-(7).

In principle, as combination of (8) and (1) yields yk =
e1+(k−1)modn ·Akx0, by virtue of a Kalman test, we would
have to study the sequence(

Ak>e1+(k−1)modn

)
k∈N (9)

and ask whether it contains n linearly independent vectors.
This condition is necessary and sufficient for observability.
However, since k 7→ e1+(k−1)modn is n-periodic, a rather
strong result from [5] states that it is enough to only consider
the first n2 iterations of (9), i.e.

A>e1, A
2>e2, . . . , A

n>en, A
(n+1)>e1, . . . , A

n2>en.

If those n2 vectors do not span Rn, then the entire sequence
(9) does neither. For the sake of completeness, we briefly
repeat this result here: consider a linear system of the form
(1) with output

yk = Ckxk, (10)

where Ck+s = Ck is periodic for some minimal period s.
In other words, the output of the system is produced by
different output matrices C0, C1, . . . , Cs that are switched
through periodically. If we further assume that this discrete-
time system is the result of periodically sampling some
continuous-time system, then we can take A to be invertible.
Now, group the matrices in the family (CkA

k)k∈N with
respect to the modes Ci of the output matrix. This results in
the grouped block-matrices

C0

C0A
s

C0A
2s

...

 ,


C1

C1A
s

C1A
2s

...

A, . . . ,


Cs
CsA

s

CsA
2s

...

As.

Since A is assumed to be invertible, the powers of A
which are multiplied from the right need not be further
considered in the observability analysis. Thus, the span of the
sequence (CkA

k)k∈N only depends on the cyclic subspaces
generated by the pairs (As, C0), (A

s, C1), . . . , (A
s, Cs). By

Cayley-Hamilton, each cyclic subspace is spanned by the
observability matrices of the pairs (As, Ci). More explicitly,
the only relevant matrices are those in

C0

C0A
s

...
C0A

(n−1)s

 ,


C1

C1A
s

...
C1A

(n−1)s

 , . . . ,


Cs
CsA

s

...
CsA

(n−1)s

 .



The total number of these matrices is precisely n(s+ 1).
A trivial sufficient condition for the switched linear system
(10) to be observable is that one of the pairs (As, Ci) is
observable. Later below, however, we will find that this
condition will not be met for models of evolutions of
pictures, cf. Fig. 2.

The above considerations for systems with periodic Ci
are algebraic, yet generic. In the present paper, we aim to
find constructive conditions for observability by exploiting
systems theoretic properties of A. We thereby focus on
systems that are “natural” models for describing the evolution
of pictures, i.e. systems whose solutions neither converge
nor diverge but have certain “recurrences”, again cf. Fig. 2.
Specifically, we derive resonance-like conditions for observ-
ability.

It shall be remarked that state-space approaches to image
processing have been pursued before [6]. In fact, efforts
have been taken to provide general realizations of restoration
and recovery filters given as transfer functions (for a broad
introduction to these filters, cf. [7, Chapters 6 & 7]) in state-
space [8].

However, stochastic (viz. Bayesian) methods for image
restoration still remain most popular [9].

IV. SYSTEMS EVOLVING UNDER PERMUTATIONS

The case where A is a permutation matrix shall receive
particular attention. For instance, the dynamical system gov-
erning the evolution of the picture in the left column of Fig.
2 evolves under repeated application of some permutation.

In particular, let σ be a permutation, i.e. an injection
from {1, . . . , n} onto itself, and let Pσ ∈ Rn×n be the
corresponding permutation matrix, i.e. the matrix whose
entry σ (i) in row i is 1 but whose other entries are all zero.
Reconsider (1) and let A = Pσ . Then our measurements (8)
amount to

y1 = e1 · Pσx0
= x0,σ(1) (11)

y2 = e2 · P 2
σx0 = e2 · Pσ2x0

= x0,σ2(2) (12)

y3 = e3 · P 3
σx0 = e2 · Pσ3x0

= x0,σ3(3) (13)
...

yn = en · Pnσ x0 = en · Pσnx0

= x0,σn(n) (14)

yn+1 = e1 · Pn+1
σ x0 = e1 · Pσn+1x0

= x0,σn+1(1) (15)

yn+2 = e2 · Pn+2
σ x0 = e2 · Pσn+2x0

= x0,σn+2(2) (16)
...

whence we can (only) reconstruct the entries σin+k (k), i ∈
N, of x0. This leads us to the following proposition, asking
for σin+k (k) to cover all indices of x0.

Theorem 1: Let σ be a permutation of {1, . . . , n} and in
(1), let A = Pσ ∈ Rn×n be the corresponding permutation
matrix. Then x0 can be reconstructed from (yk)k∈N if and
only if

N× {1, . . . , n} → {1, . . . , n}, (i, k) 7→ σin+k (k) (17)

is onto.
Proof: Reconsider the iteration (11)-(16) and find that

every entry of x0 is attained by k 7→ yk if and only if
(i, k) 7→ σin+k (k) is surjective.

Example 1: Let n = 5. In cycle notation, consider the
permutation

(4 2 3 1) (5) (18)

for which we have

1 = σ2 (2) , x0,1 = y2 (19)

2 = σ3 (3) , x0,2 = y3 (20)

3 = σ8 (3) , x0,3 = y8 (21)

4 = σ1 (1) , x0,4 = y1 (22)

5 = σ5 (5) , x0,5 = y5 (23)

whence (i, k) 7→ σin+k (k) is onto {1, . . . , n} and the system
(1) with measurements (2)-(7) is observable for A = Pσ . In
particular, as argued above, x0 can be reconstructed from
y1, y2, y3, y5, y8. If we had n = 4 and deleted the cycle
σ (5) = 5, then the system would not be observable, for
σin+k (k) = σk (k) whence σin+k (k) could not attain the
value 3. The reason for this is that the cycle length is n.

Our previous condition has a particularly insightful in-
terpretation in terms of cycles of σ. Specifically, the last
example illustrates that permutations in which n is a multiple
of a cycle length deserve particular attention.

Proposition 1: Let σ be a permutation of {1, . . . , n} and
in (1), let A = Pσ ∈ Rn×n be the corresponding permutation
matrix. Let all cycles of σ have lengths such that n is a
multiple of these lengths. Then x0 can be reconstructed from
(yk)k∈N if and only if k 7→ σk (k) is injective.

Proof: Reconsider Theorem 1. Since distinct cycles
are disjoint, it is sufficient to restrict our attention to one
particular cycle, say of length `, with n being a multiple of
`. Thus, for all i ∈ N, in is a multiple of `, as well, and hence
(i, k) 7→ σin+k (k) is surjective if and only if k 7→ σk (k) is
surjective. As surjectivity is equivalent to injectivity on finite
sets, this completes the proof.

Example 2: The previous proposition can be applied to
our example from Fig. 2. In particular, numbering the n = 9
portions of the picture, “pixels”, row-wise, the permutation
σ governing the evolution of the picture in the left column
of the figure decomposes into the cycles

(1 2 3) (4 5 6) (7 8 9) (24)

which all have length 3, of which n = 9 is a multiple.
Now consider the cycle (1 2 3). We have that σ (1) = 2,
σ2 (2) = 1, and σ3 (3) = 3, whence k 7→ σk (k) is (both
injective and) surjective and thus the pictures on the left can
be reconstructed from those on the right.



Specifically, x0 can be inferred from y1, . . . , y9. In other
words, system (1) with measurements (2)-(7) is observable
with A = Pσ . On the contrary, should each row have four
pixels, amounting to a total of n = 12 pixels in the picture,
then the permutation governing the evolution of the picture
would decompose into the cycles

(1 2 3 4) (5 6 7 8) (9 10 11 12) . (25)

These cycles all have length 4, of which n = 12 is, again, a
multiple. As before, we may restrict our attention to the first
cycle (1 2 3 4). Here, we find that σ2 (2) = 4, but σ4 (4) is 4,
as well, whence our dynamical system cannot be observable
by virtue of our foregoing proposition. In general, for an
even number of pixels per row `, we will always have that

σ`/2 (`/2) = σ` (`) = ` (26)

and hence arrive at an unobservable system. Similarly, for
an odd number of pixels per row, the system will always be
observable. We also find that, in order to have k 7→ yk attain
all values of x0 at least once (and hence bringing us into the
position to reconstruct x0), we would have have to wait for
k = n time instances, which is just the number of pixels in
the picture.

V. SYSTEMS EVOLVING UNDER ROTATIONS

In this section, the case where A is a rotation matrix shall
receive particular attention. As for the permutation matrices,
a reason to consider rotations is that iterated applications
thereof carry no nonzero vector to zero, i.e. these iterations
exhibit nontrivial behavior. In particular, let n = 2 and

A = Rα =

(
cos (α) − sin (α)
sin (α) cos (α)

)
(27)

for which we receive the measurements

y1 = e1 ·Rαx0
= x0,1 cos (α)− x0,2 sin (α) (28)

y2 = e2 ·R2
αx0 = e2 ·R2αx0

= x0,1 sin (2α) + x0,2 cos (2α) (29)

y3 = e1 ·R3
αx0 = e1 ·R3αx0

= x0,1 cos (3α)− x0,2 sin (3α) (30)

y4 = e2 ·R4
αx0 = e2 ·R4αx0

= x0,1 sin (4α) + x0,2 cos (4α) (31)
...

and thus find that x0 is related to these measurements through
y1
y2
y3
y4
...

 =


cos (1α) − sin (1α)
sin (2α) cos (2α)
cos (3α) − sin (3α)
sin (4α) cos (4α)

...
...

x0. (32)

This leads us to the following proposition.

2π
3 = 8π

3 mod2π
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6π
3 mod2π = 0
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Fig. 3. Resonance 4 2π
3

mod 2π = 2π
3

Proposition 2: Let α ∈ (0, 2π) and in (1), let A =
Rα be the corresponding rotation matrix. Then x0 can be
reconstructed from (yk)k∈N if

∃p, q ∈ N : ((2p+ 1)α)mod 2π = (2qα)mod 2π. (33)

Proof: Reconsider the relation (32) and recall that
rotation matrices are invertible. If an even multiple 2q and
an odd multiple 2p+ 1 of α are the same, modulo 2π, then
the rows 2p+1 and 2q of the matrix relating x0 to (yk)k∈N
form a rotation matrix, whence (32) admits a unique solution
in x0.

Example 3: Let (n = 2 and) α be 2π/3. Then

4αmod2π = α

and hence the rows 4 and 1 of the matrix relating x0 to
(yk)k∈N in (32) are themselves a rotation matrix, i.e. x0
can be reconstructed from y1 and y4, from which we infer
that the system (1) with measurements (2)-(7) is observable
with A = Rα. Two different interpretations of this resonance
4αmod2π = α are depicted in Fig. 3. On the other hand,
let α = π. Although the condition (33) cannot be satisfied,
for any even multiple of π is zero modulo 2π and every
odd multiple of π is π modulo 2π, the rows 1 and 2 of
the matrix relating x0 to (yk)k∈N in (32) are (−1, 0) and
(0, 1), respectively, such that x0 may still be reconstructed
(viz. from y1 and y2), and illustrating that the condition from
Proposition 2 is not necessary.

Though stemming from the particular case that n = 2,
the observation from Proposition 2 offer to generalize to the
case where A is from some arbitrary matrix (Lie) group G,
say the orthogonal group O(n), or the special linear group
SL (n), as the following proposition formalizes.

Theorem 2: In (1), let A = G ∈ G for some matrix group
G. Then x0 can be reconstructed from (yk)k∈N if

∃G′ ∈ G : ∀k = 1, . . . , n ∃i ∈ N : Gin+k = G′. (34)



Proof: The initial condition x0 is related to (yk)k∈N
through 

y1
y2
...
yn
yn+1

yn+2

...


=



e>1 G
e>2 G

2

...
e>nG

n

e>1 G
n+1

e>2 G
n+2

...


x0. (35)

If the condition (34) is met, then some row in + k of the
matrix relating x0 to (yk)k∈N, for which Gin+k = G′, is
precisely the kth row of G′. As we insisted that this condition
shall be satisfied for all k = 1, . . . , n, we may find all rows of
G′ within our matrix relating x0 to (yk)k∈N. Since members
of G must be invertible, this also reveals that (35) admits a
unique solution in x0.

Example 4: Let n = 3 and consider the special linear
group G = SL (3), of whom

G =

 −1 1 1
1 1 −1

−3/2 3/2 1

 (36)

is a member. Consider another member,

G′ =

5/2 1/2 −2
1/2 1/2 0
3 0 −2

 (37)

of SL (3). We have that

G2n+1 = G′, y2n+1 = e>1 G
′x0 (38)

G3n+2 = G′, y3n+2 = e>2 G
′x0 (39)

G4n+3 = G′, y4n+3 = e>3 G
′x0 (40)

letting us conclude that the condition (34) is satisfied and that
the system (1) with measurements (2)-(7) is thus observable
for A = G. In particular, x0 can be reconstructed from y7

y11
y15

 = G′x0, x0 = G

 y7
y11
y15

 (41)

via inversion of G′, which was just G−1.

VI. SYSTEMS WITH PERIODIC ORBITS

The last result of the previous section, i.e. Theorem 2,
offers to extend to rather general systems which admit
periodic orbits. In particular, let A be such that

∃p ∈ N : ∀x0, Apx0 = x0, (42)

i.e. let (1) posses a periodic orbit with period p for any initial
condition. This amounts to requiring that A is of finite order
p.

Theorem 3: In (1), let Ap = In, the n×n identity matrix,
for some p. Then x0 can be reconstructed from (yk)k∈N if

N× N→ Z, (i, j) 7→ ip− jn (43)

is onto {1, . . . , n}, i.e., in particular, if p and n are coprime.

Proof: The initial condition x0 is related to (yk)k∈N
through 

y1
y2
...
yn
yn+1

yn+2

...


=



e>1 A
e>2 A

2

...
e>nA

n

e>1 A
n+1

e>2 A
n+2

...


x0 (44)

wherein Aip = In for all i ∈ N. Now if (43) is onto
{1, . . . , n}, then

∀k = 1, . . . , n ∃i, j ∈ N : k + jn = ip (45)

and hence the matrix relating x0 to (yk)k∈N in (44) contains
the rows e>1 , . . . , e

>
n . Having found n linearly independent

rows, we infer that (44) admits a unique solution in x0.
Example 5: Let n = 4. Following the construction in [10],

the matrix

A =


1 3/2 3/2 − sin (2π/3)
0 1 0 0
0 −3/2 −1/2 sin (2π/3)
0 − sin (2π/3) − sin (2π/3) −1/2


(46)

is finite of order p = 3, i.e. A3 = I4. We have that

1 = 3p− 2n, x0,1 = y2n+1 (47)
2 = 2p− 1n, x0,2 = y1n+2 (48)
3 = 5p− 3n, x0,3 = y3n+3 (49)
4 = 4p− 2n, x0,4 = y2n+4 (50)

and hence infer that (43) is onto {1, . . . , n}, letting our
system (1) with measurements (2)-(7) remain observable. In
particular, as argued above, x0 can be reconstructed from
y6, y9, y12, y15.

VII. APPLICATION: REMOVING SMEAR

In the present section, we now apply the understanding
gained from our results to the distortion effect from the top
of Fig. 1, i.e. the “smear”. In Fig. 4, we depict a simple
sequence of pictures on the left in which 5 black pixels
among n = 25 overall pixels rotate and thus cause a smear in
the pixel-by-pixel measurements depicted on the right. The
behavior on the left is modeled by a system evolving under
the permutation

(11 21 23 25 15 5 3 1) (12 17 18 19 14 9 8 7) ,

in cycle notation, with all indices not explicitly mentioned
being 1-cycles. The resulting permutation matrix has finite
order p = 8. As the permutation matrices are also a (finite)
matrix group, we can here make use of either Theorem 1, 2,
or 3. One is tempted to think that Theorem 1 is preferable
(for being both sufficient and necessary) but we here opt to
apply Theorem 3 for the following reason: in order to verify
that (43) is onto {1, . . . , n}, it is enough to only know p and
n. In particular, it is not required to know A explicitly.



The same statement remains true if we ask to reconstruct
x0, i.e. one does not have to know A explicitly to do so, but
it is sufficient to know p. More particular, we have

1 = 176− 175 = 22p− 7n (51)
2 = 152− 150 = 19p− 6n (52)
3 = 128− 125 = 16p− 5n (53)
4 = 104− 100 = 13p− 4n (54)

...
25 = 200− 175 = 25p− 7n (55)

and, in general, k = ip− jn with

j = p− 1− (k − 1)mod p (56)

hence knowing that (43) is onto {1, . . . , n}, and, further,
letting us conclude that the kth pixel of the picture x0 can
be reconstructed via

x0,k = yn(p−1−(k−1)mod p)+k. (57)

For instance, the k = 8th pixel, i.e. the third pixel of the
second row, is correctly identified as being white in x0.

VIII. CONCLUSION AND OUTLOOK

We posed the problem of reconstructing a time series of
pictures from measurements with rolling shutter, i.e. with a
pixel-by-pixel (or line-by-line) evaluation, as an observability
problem. Assuming certain recurrences of the dynamical
system governing the evolution of the pictures, we derived
resonance-like conditions for observability.

Among other examples, we illustrated our findings on the
removal of a distortion effect called “smear” which is known
to arise in cameras with rolling shutter.

In the future, it would be interesting to ask for unobserv-
able subspaces occurring in this setting, i.e. circumstances
under which a picture can only be partially reconstructed.
Further, since the reconstruction methods we presented all
relied on knowing the recurrences of the dynamical system
governing the evolution of pictures, it should be of interest
how precisely a picture can be reconstructed if we are only
provided estimates of those recurrences.

REFERENCES

[1] E. R. Fossum, “CMOS image sensors: Electronic camera-on-a-chip,”
IEEE Transactions on Electron Devices, vol. 44, no. 10, pp. 1689–
1698, 1997.

[2] commons.wikimedia.org, licensed by CC BY-SA 3.0.
[3] C.-K. Liang, L.-W. Chang, and H. H. Chen, “Analysis and compensa-

tion of rolling shutter effect,” IEEE Transactions on Image Processing,
vol. 17, no. 8, pp. 1323–1330, 2008.

[4] J. Y. A. Wang and E. H. Adelson, “Representing moving images with
layers,” IEEE Transactions on Image Processing, vol. 3, no. 5, pp.
625–638, 1994.

[5] S. Bittanti, P. Colaneri, and G. De Nicolao, “Discrete-time linear
periodic systems: A note on the reachability and controllability interval
length,” Systems & Control Letters, vol. 8, pp. 75–78, 1986.

[6] R. Roesser, “A discrete state-space model for linear image processing,”
IEEE Transactions on Automatic Control, vol. 20, no. 1, pp. 1–10,
1975.

[7] A. Rosenfeld and A. C. Kak, Digital Picture Processing (Second
Edition, Volume 1). Academic Press, 1982.

real picture

k
=

0

measurement

k
=

1
k
=

2
k
=

3
k
=

4

..
.

..
.

k
=

24

Fig. 4. Rotating object and “smear”

[8] E. Fornasini and G. Marchesini, “State-space realization theory of two-
dimensional filters,” IEEE Transactions on Automatic Control, vol. 21,
no. 4, pp. 484–492, 1976.

[9] S. Geman and D. Geman, “Stochastic relaxation, Gibbs distributions,
and the Bayesian restoration of images,” IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 6, no. 6, pp. 721–741, 1984.

[10] R. Koo, “A classification of matrices of finite order over C, R, and
Q,” Mathematics Magazine, vol. 76, no. 2, pp. 143–148, 2003.


