Pinning Capital Stock and Gross Investment Rate
in Competing Rationally Managed Firms*

Jan Maximilian Montenbruck and Frank Allg dwer

Institute for Systems Theory and Automatic Control, University of Stuttgart,
Pfaffenwaldring 9, 70550 Stuttgart, Germany

Abstract: We consider two competing firms in a competitive industrydeled as proposed by J. P.
Gould. Assuming that one company is a start-up and the otirapany is a well-established one with
a dynamic behavior determining the optimum, we take thetpafiview of the start-up. We propose
a pinning control scheme that makes the solutions of thé-gpain capital stock and gross investment
rate approach the solutions of the company determiningek&et behavior. The approach is discussed
based on numerical examples. An extension of the proposadottaw equips it with the capability to
cope with uncertainties. We interpret our findings from teespectives of control theory and economics.

1. INTRODUCTION Chen and Chen [2007] have shown how to control the chaotic
behavior of the Cournot-Puu duopoly model. Equilibria and
1.1 Motivation (optimal) control laws in oligopolies were investigatedisrp
and Perloff [1993].

If one wants to apply control theory to improve the perfort@n Recently, analyses of micro- and macroeconomical systasis h
of a business in a competitive industry, one usually uses teyeen performed through the point of view of complex net-
niques from optimal control to maximize the value of all ft@u \orks; cluster synchronization phenomena have been oerv
cash flows. In doing so, the optimum is determined by the cogf stock markets by Basalto et al. [2005]. Similarly, Straga
functional, which is chosen subjectively. If, in contrashe [2001] observed clustering among the largest companigin t
lets the optimum be determined by the performance of anothgk akansson and Ford [2002] discuss how to cope with the
company, different control theoretical techniques aressary. phenomena and paradoxa arising when coupling companies in

For doing so, we propose a pinning controller that forces th@ network. The clustering coefficients of business networks
gross investment rate and the capital stock of a company kipartite graphs were analyzed by Souma et al. [2003].
converge to the gross investment rate and capital stock of

another company exponentially. 1.3 Contribution and Sructure of the Document

1.2 PreviousWork Previous work has focused on designing controllers by means
of optimal control and on analyzing dynamical phenomena in
To derive our control laws, we utilize the model of a ratidyal coupled businesses. In contrast, we want to couple busis@ss
managed firm in a competitive industry proposed by Goulgrder to design controllers, i.e. we introduce a couplirtgieen
[1968], who applied optimal control theory to maximize theawo companies to achieve certain convergence properties fo
value of all future cash flows. Moreover, for our controllerone of the companies. In doing so, we will achieve strong
design procedure, we exploit th@uAD property of the un- convergence properties.
derlying vector field, which has in the past been proposed QP( i ) .
DeLellis et al. [2011, 2009, 2008] for similar problems. Wgc | € remainder of the document is structured as follows; in
fields with this property are particularly suited to deriverpng ~ S€ction 2, we formalize the control problem that we want to

controllers, such as by Grigoriev et al. [1997], Li et al. (20 solve. Therein, we introduce the model that we presume for ou
Chen et al. [2007], Porfiri and di Bernardo [20,08]. " controller design procedure. We assume this model to be vali

for both companies. In particular, we will assume one corgpan
Classical control laws for microeconomical systems are deo be a well-established, well-running company and therothe
rived with methods from optimal control; a finite-time prefit company to be a start-up. The desired behavior for the start-
maximizing controller was designed by Simaan and Takayamg will thus be given by the behavior of the well-established
[1976] considering monopolists. A review on feedback conwell-running company. We will show that the vector fields of
trollers assisting business decisions was written by Mofec the models satisfy theuAD property, which is often assumed
[1985] and a broad insight on such techniques is given i literature for synchronization and pinning control. ktton
Morecroft [2007]. A more dynamics- and less feedback-eglat 3, we present our main result. Subsection 3.1 contains the
point of view on businesses is elaborated in Sterman [200Qontroller design procedure using a pinning scheme and the
* Corresp. author: J.M. Montenbruckgn- naxi mi | i an. nont enbr uck proof er the convergence properties of .the resulting dese
@ st . uni -stuttgart. de). The authors would like to thank the German loop, viz. gross mveStment rate and Cap'tal stock of the-sta
Research Foundation (DFG) for financial support of the ptojeithin the ~UP converge exponentially towards gross investment rate an
Cluster of Excellence in Simulation Technology (EXC 31Gi3he University ~capital stock of the well-established, well-running compan
of Stuttgart. subsection 3.2, we present a method for choosing production




guantity and wage such that the proposed control law can Ber such tasks, i.e. synchronization of trajectories of- sys
realized. We discuss the result in section 4 and illusttabmi tems, certain assumptions are frequently imposed in liteza
a numerical example in section 5. In section 6, we propogemong them is th&QuAD condition studied by DelLellis et al.
an extension of our main result for coping with uncertaimtie [2011, 2009, 2008]. Namely, a system="f (x) is said to be
Section 7 concludes the paper. QUAD(A, w), if (a—b)' (f(a)— f (b)) —(a—b) A(a—b) <
—w(a—b)" (a—b) for all a, b, with A some diagonal matrix
andw some finite scalar. If a systemdgJAD, it is particularly
pealing for application of certain control schemes;, etgp

Gould [1968] has proposed the two-dimensional dynamlcgf derivatives of certain Lyapunov functions are easilgyan
system to be negative definite fapUAD systems.

K ()] _ 1" (t) = 8" () K™ (1) (1) ClaimL The system (3) iUAD(A, ) for all w and A =

()| [T @)+a7)(r(t)+5" (1)) —P (1) G (t) A1 & D, satisfying 40y — w—r (1) — 3 (1)) (A — w+ S (t)) =
to model the dynamics of a rationally managed firm in &, whered is the direct sum of matrices.

o .o ) .

IC*O r:nﬂgitlt;veﬂén?hu; tgyr,ovsv? ﬁalz\i/eét%er: E{%} heﬁ:f pﬁa]lett%cek, _Proof. First, let us rewrite th@UuAD condition for system (3),

percentage of capital stock taken as replacement investmerf

2. PROBLEM STATEMENT

g* € R the ratio between the costs associated with investing|as — by ' ap— 5( Jai—hby+d(t)by
in capital stock and the gross investment rateR* — R the ap—hz| [(@2+0)(r(t)+3(t)— (b2+a)(r(t)+3(t))
instantaneous interest rate; : Rt — R denotes the product a—bl T a—b
i . Rt i i 1 — 01 1— D01
price, andG* : RT — R is determined by . < [az bz] (A—wly) {az B bz} , (8)
* d * d * -
G* = 3 F (dL* F ) ; (2)  when using the notatioa= (5], b= {gﬂ The latter is just

whereF* : R* x R x R — R is the production quantity and §(t) (a; — by)?— (a1 — by) (a2 — bp) — (r (t) + 3 (1)) (a2 — bp)?
L* the labor inputG andd are decision variables. The initial > _(A bi)2— (A b)2
values of (1) are denoted b (0) = K andl* (0) = 15. = — (B — ) (& —by)" — (B2 — w) (82 - 2()9)
Traditionally, (1) is used to derive inputs that maximizeta® \yhen factoring out. We consequently have
cost functionals quantifying the value of the firm by means of

Nl Y 0< (ay—b)° (81— @0+ 3 (1)) +

optimal control theory. 2

We assume that (1) is a well-established, well-running camyp (B2 =0)"(Bz = =1 (1) = (1)) ~ (@1 —bn) (22 ~ |O2(>170)

and that hich is satisfied withe = 2(A2— w—r (t) — 5 (t)) and 1
-5 w Vi v .

ﬁ((tt))} B [( ( )+Q)I(Et()t)+c(5t()tl)<)(£)p(t)e(t) (3) 2e(A1—w+ (1)) using Young’s inequality. Equating fag,

_ _ S ’ we arrive at 40, — w—r(t)—o(t)) (A1 —w+d(t)=1. W
is a start-up (i.e. we have initial conditio®(tg) = Go < Gj

andl (tg) = lg < 1 for (3)), whose point of view we take. Our 3. MAIN RESULT

goal is to design inputd andG such that the solutions of (3)

converge to the solutions of (1). A3is only a virtual quantity 3.1 Pinning Scheme

representing the influence of our production, we will firstide

G and later choosE such that As we assume that company (1) does not know what the
0 0 -1 start-up is currently working on, and as the start-up cannot
G= 9K (HF) influence the dynamics of company (1), we have to lesvand

G* untouched. Hence, undirected (i.e. bidirectional) diffas
plings are no means to solve the posed problem. Instead,
will have to use pinning, i.e. applying a certain input i®o
node of a network to achieve certain properties for the entir
[5(0] —C(K* (1)1 (1), P* (1), 8" (1)) (5) network. Such techniques have thoroughly been studied for
G(t) QUAD Systems, e.g. by Grigoriev et al. [1997], Li et al. [2004],
and we will consequently design such herein. Note that wehen et al. [2007], Porfiri and di Bernardo [2008]. As such, we
do not want to derive inputs that are to be applied in practidéfOPOSe the formulee

holds true. In doing so, we assume that the quantiigsl *,
P*, andd* are known to the start-up. We are hence interestq;é)e
in feedback€ of the form

precisely subject to equations, but rather to derive eqoathat C1 (K" (t),1*(t),P*(1),0" (1)) =
provide support in the actual choice of decision variables. 1 . . . i
For doing so, let us define the error K—(t)(_K O-rO+H+HK®) A1)
K* () —K C2 (K™ (1).1° (1).P" (1).8" (1)) =
E(t) = |: I*Et%—| (E))] (6) i(P* ('[)G* (t)+(| (t)+q) (I’ (t)+5(t)—l)—
and the error dynamics P(t)
o [KE)—K@O)] " O+g)(r(t)+8"(t)-1)+a-q’) (12)
B = [ I* (t) — 1 () } =X(E) (") and compose the control law (5) according to

(13)

and reformulate our design goal to makiago to zero as time Cc— C
approaches infinity. TG



We consequently have the following proposition. such that we arrive at a functidhthat letsG satisfy (12). For
Claim2. Consider the systems (1) and (3) and the feedback (89ingd so, we take the production planning formula

under pinning scheme (11), (12), (13). Then the errordynami  a (t) =P*(t)G"(t)+ (1 (1) +q)(r(t)+o(t)—1)—

(7) are uniformly exponentially stable at the origin. IO +g)rt)+6*(t)—1)+g—q° (22)

Proof. Consider the Lyapunov function candidate and the formula

W) = K({®P?(1) 23)

V(E)= lee (14) L(t)
2 to determine the wage.

g O \nsi _

Then we clealrly havey “EH <V (E) .S Vo |[E[[”” with 0 = 2 Claim3. If a andW are chosen subject to formulae (22) and
andy, = y» = 5 (cf. Khalil [1996]). Letting Lx V (E) denote the (23), thenG satisfies (12).

Lie derivative ofV along the vector fielK, whereX is given
by (7), we have

LxV (E) = (K* (t) — K (1)) (K* + <t>
(I <>—|<>><I . |<t> (15) wt) = KUPOB( (24)

and we substitute (1) and (3) to arrive at for the wage, according to (20)Lét)uatin with (23), we se th
LV (8) = (K° () -K(1) % PPN |

1(t) = 8" ()K" () — 1 (1) + 3 (K (1) + Bt)=P(t). (25)

For G, we have

-1
Proof. Taking (21), ther( ) Hence, we have

(") =1(1) (1" O +a) (r(t)+0" (1) - at)

P0G (1)~ (10 +0) (1 (1) +5(1)) + PMG()).  (16) M) 20)
Substituting the feedback (5) under the pinning scheme, (1yhen we solve (19) with (21) at hand. Substituting (22) and
(12), (13) yields (25) into (26), we arrive at

LxV (B) = (K" (1) =K (1)) G(t) = %(P" OGO+ (O +a)(r 1) +38(t)—1)—
(FO-s oK O-10+ (O +@) O+ (1)~ 1) +a-a),
K (t) — K* (t) — 1" (1) + 1 (t) + & (1) K* t))+ | _ (27)
"0 -10) ('O +a) (10 +8° (1) -G )~ e agreeswin(t2) "
(O +a)(r(t)+5()+ 4. DISCUSSION
POGC O+ O+a)(r(®)+6(t)—1)— _ _
(IO +q) (r () +8* () — 1) +q—q°). We first represent the proposed controller as a classicdt fee

(17) back interconnection and interpret its elements accolyling
o o The feedback interconnection is depicted in Fig. 1. Theie
Simplifying, the latter is just can see that (1) serves as a (pre)filter or as a referenceaghere
LxV (E) = — (K* (1) —K (t))2_ (1% (t) =1 (t))z, (18) (r?;) i_s the pllant.dV\Ilith_thi.s Ipofint of viﬁw, i; is possiple to dpp
which satisfies kV (E) < —ys|E[|® with ys = 1 (cf. Khali the internal model principle for synchronization to intesipour

; L results (cf. Wieland et al. [2013]). In practice, howevengo
[1996])' Acc_ordlr)g to Lyapunov's direct method, hence, th9v0u|d have to construct a suitable observer to reconsKiigct
origin of (7) is uniformly exponentially stable. ]

I*, P*, andd*. The block containing (5), (11), (12), and (13) is

both, the computation of the error and the controller itsEtfe

3.2 Choosing Production Quantity and Wage signalsK, I, P, andd are fed back. (22) and (23) can either be
seen as a separate controller or as the inner part of a cascade

For the proposed pinning schen®eandG have to be chosen depending on where we draw our system boundaries.

subject to formulee (11) and (12), respectively. Whileis

a dec_ision variapIeG results indirectly from the production —{(22),(23)—
guantityF according to
5 5 1 F,W
G_a_KF (aLF) ’ (19) o*,G* K*, 1% P*, &% 0,G
1) (5).(11)-(13 3)

where .

K(t) 7} /W)

L(t) <0LF) (P(t))’ (20) K,I,P,d
andW is the wage. Thereirk; is often assumed to be homoge-
neous of degree one, i.e. of form Fig. 1. Systems (1) and (3) and the feedback (5) under pinning

F(t,K,L) =at)K+pB(t)L, (21) scheme (11), (12), (13) together with andW chosen

subject to formulae (22) and (23), depicted as a classical

wheref is determined by the labor efficiency (which we cannot feedback interconnection.

influence) and is typically determined by production planning
(which we can influence). Also, the wa@é can be chosen up We now focus on the interpretation of the derived controdaw
to a certain degree. We would thus want to desigandW, themselves.



Taking a look at (11), we find that the percentage of capitafase 2 §* =0, G* =5, d andG subject to (5), (11), (12), (13)).
stock taken as replacement investmérapproaches 1 if the In the second scenario, we choose constant valued*a&*,
capital stockK approaches infinity, i.e. for very large capi-i.e. a feedforward control. The integral curves of (1) andf@

tal stocks, one takes the entire capital stock as replaceme@iotted in the upper right of Fig. 2. Company (1) is driven by
investment. Moreover, a®* — 1)K* grows, d grows, i.e. as a conservative strategy and constantly increases cafuit at

the competing company increases replacement investnreat, @ low rate. The start-up (3) chooses the proposed control law
increases replacement investment as well. Howeve¥; iit-  (5), (11), (12), (13) and thus approaches the capital stdck o
tains the value 1, the value vanishes. The remaining inflkencompany (1) exponentially, leading to capital stock growth

is a diffusive coupling known from classical synchronieati . .
; ; « Case3§*=0,G"=5,0=—-0.5,G=5).Inthe third scenario,
problems (cf. Hale [1997]). In particular, as the differehe | we choose constant values Bt G*. 3. andG. i.e. a feedfor-

increases, one increases replacement investment. . .
ward control. The integral curves of (1) and (3) are plotted i
Now reconsider (22) and its effect on the production qugntitthe lower left of Fig. 2. Company (1) is driven by a conser-
F. It can be inferred that an increasing product pf¢eand an vative strategy and constantly increases capital stocki@ava
increasing capital stocK* in the competing company forces rate. The start-up chooses negative replacement inves(ingen
one to increase the production quantity. Again, the remaini e.g. selling of machinery) and thus constantly increaspiala
influence is diffusive, i.e. based on differences betwedneg stock until it eventually outperforms (1). Note that thigsario
from (1) and (3). In particular, the diffusive term Is—1* is not realistic as no company has infinite machinery to sell
whenPG = P*G* = 1, i.e. the difference in time-derivative of (cf. Feldstein and Rothschild [1974]). However, it illuatEs
the gross investment rate between the companies affects that the proposed control law (5), (11), (12), (13) discdsse
production quantity positively. Case 2 may provide a performance worse than the optimum.
. . , In other words, in almost all cases it is possible to find open-
Last, consider (23). If larger labor inplutresults in the same loop controls that achieve better performance than theqseg

values for capital stock and product pricé®, then the wage .
is decreased. This can be understood such that if larger Iali%mtrOI law (), (11), (12), (13). Yet, with the proposed toh

input does not positively influence capital stock and produ aw, one 'ntrOdl.JceS feedback to the system and is thus aapabl
price, then the labor efficienc§ has decreased. Lower IaborOf reacting to disturbances and uncertainties.

efficiency does thus automatically decrease wage. In cemtraCase 4 §* = 0.3, G* = 5, d andG subject to (5), (11), (12),

if the capital stock of the company increases, wages inerass (13)). In the fourth scenario, we choose constant valued*for
well, i.e. the employees participate in the success of thbor  G*, i.e. a feedforward control. The integral curves of (1) adid (
input. are plotted in the lower right of Fig. 2. Company (1) is driven
isky strategy that lets its capital stock decay asymgadi.

e start-up (3) chooses the proposed control law (5), (11),
(12), (13) and thus approaches the capital stock of compgny (
exponentially, leading to capital stock growth in the bedig,
Note that the above considerations are purely theoreWdaile  but eventually lets capital stock decay asymptoticallyisTh
o may be chosen subject to (11), we do neither expect the wadisadvantage of the proposed control strategy could bedcope
to be chosen precisely according to (23), nor the producepriwith by using the average of multiple companies as a referenc
to be chosen precisely according to (25) in practice. lmktealn this fashion, one could increase robustness againstatapi
we aim to derive equations that support the actual choice sfock decay of single companies.

decision variables.

Most of the above relations appear natural to us and it is ni(%:
to find that the constructed controller provides effect®ainy
with our intuitive understanding.

T [ _ T B —
15 | 15"
5. NUMERICAL EXAMPLES *% 10| 1 10
X 50 1 5
To illustrate the effects of the proposed control schemetand o— 0
validate our claims, we simulate four case studies numlgrica 0 1 2 3 4 5
We discuss two cases where the dynamics of (1) and (3) are 15} - ] 15k T ]
decoupled, i.e. the classical case, and two cases where theg 10 10 T
dynamics of (1) and (3) are coupled according to (5), (1D),(1 - B | B T~ b
X =
(13). 5 1 50 —
In all of the scenarios, we choose the initial conditiéijs= 15 0 ——F—F— 0——F——
andlj = 4 for (1), and the initial conditionky = 1 andlg = 2 0 1 2 3 45 01 23 45
for (3). The differential equations are solved imM.AB using t t
ode45.

. . ) ) Fig. 2. Integral curveK (t) (—) andK*(t) (- - -) for systems
Case 14" =0,G"=5,0=1,G=5).In the first scenario, we (1) and (3) under different choices dfandG. Upper left:
choose constant values fof, G*, 8, andG, i.e. a feedforward 5*=0,G* =5, =1,G="5. Upper rightd* = 0,G* =5,

control. The integral curves of (1) and (3) are plotted in the 5 andG subject to (5), (11), (12), (13). Lower lef* =0,
upper left of Fig. 2. The company (1) is driven by a conseveati G*=5,5 = —0.5,G = 5. Lower right:3* = 0.3, G* = 5,
strategy and constantly increases capital stock at a levTae 5 andG subject to (5), (11), (12), (13).

start-up (3) chooses a risky strategy that provides inargas

capital stock in the beginning, but then lets the capitatlstgo  We have illustrated that our control law is not optimal in any
to zero asymptotically until bankruptcy. sense. However, it introduces feedback into the systemelf w



choose to apply the control law, we restrict our performance
the performance of the company (1). Even more, if the perfor- (

mance of the company (1) deteriorates, our performancelwill

S0, too. In the case where the company (1) pursues a conserva-
tive strategy, our control law provided a good performarare f

capital growth.

6. A POSSIBLE EXTENSION TO COPE WITH
UNCERTAINTIES

We now want to consider a setup where our estimates (
measurements) of*, I*, P*, andd* are incorrect or somewhat
imprecise. That is, we can only access the perturbed (orunce

tam)S|gnaI5K*+K K/ (1), 1" +T=1"(t),P*+P=P'(t), and
5 +6= o’ (t). Therefore, Instead of (11) and (12), consider

Cl( /(t),|/(t),P/(t),6/(t)):

ﬁ(l( +6’<> K/ () ke (K'(0 K (1)) (28)

CZ( /t)v t))

1

m(('(t) ())( t+d(1)—

(/()‘FQ())( +5' (1) +

PG () —k(I't)—1(1))) (29)
with kg, ko > 0. Whenklszflandlszflf> 5=0,

+

- (1)
I (t

q) (r®)+o(t)+ (1) +a())(r)+ é(t)) -
)+d (1) (rt)+3' (1) +P' (1) G (t) — kol (1) )+

—ka (K™ (1) = K (1))* = ko (1" (1) = 1 (1))
(32)

Now, using theZ,.-property of the signals, we can find overes-
timates{y, {» > 0 such that

LxV (E) < —ku (K™ (1) = K (1)) — ko (I (t) =1 (1))* +
[K* (t) = K@) [{o+ |17 (1) =1 (1) | &2
mtroducingel, 6, € (0,1), we can instead write
LxV (E) < —ki(1-61) (K" (t) —
ko (1= 62) (1" (1) =1 (1))> — ka1 (K" (t) —
(O =1 ()2 + K () =K (©)[+]17 (1) -

(33)

K(1)?—
K (1))?

()2
(34)

—k26s (1

From the latter relation, we can see that
—kaBr (K* (1) = K (1))* — ka2 (1" (t) — 1 (1))* +
[K*(t) =K (@) [Qa+[1"(t) =1 (t)[2<0  (39)

implies Lx V (E) < —||E||? with y5 = min(ky,kz). Condition
(35) holds, if

this just equals (11) and (12) modulo some arithmetics. We cdold true. This can be simplified to

mterpret the tupleky, k) as a gain for the controller. K, T,

P, and & are not equal to zerds does not converge to zero
as time approaches infinity. However, we are able to impose

an arbitrarily small positive ultimate bound &by suitable
choice of(ky, kz).

In the following, let.%, denote.%, = {f :R - R|Ic € R:
If ()| <cvxeRT}.

K* () — K (£) |21 < ke 61 (K* (£) =K (1))?,
() 1) <keB (1" (1)~ 1 (1) (36)
{1
o, <K O -K),
¢
e, <0101 (37)

If thus E exceeds the bounds provided by (37), we have
LxV (E) < —wJ|E|| with y5 = min(ki, ko). Therefore, the
bounds provided by (37) form an attractive, invariant setr&4

Claim4. Consider the systems (1) and (3) and the feedback (Qzer, the bounds can be shrunken arbitrarily by appropriate

under p|nn|ng scheme (28), (29), (13)Kf T, P, 5, G, K*, 1%,
P*, 0%, a*, K, I,P, d,qge %, then for even > 0, there exists
a tuple(kl, ko) such thak is ultimately exponentially bounded
by [[E(t) [ <¢.

Proof. Define the Lyapunov function candidate

1

V(E) = 5ETE (30)

and repeat the first steps from the proof of Claim 2 until (16).
Then, substitute the feedback (5) under pinning scheme (28herefore, consider the setup with = 0, G* =

(29), (13) into the Lie derivative of alongX to have
LxV (E) = (K" (t) - K (1)) (I (t> ( ) (-
’()+5’(t) K’ (t) — ke (K’ 1))+
) (r®)+6"() - G'(t)—
( )+ (1O +am)(r (t) 5(t)—

)
') +P G 1) ke (') = 1(1) ).
(31)

Next, we replac&’ by K* +K andl’ by I* 4. Thereafter, we

t) (1" (t)+
(( q(t)) (r(t)+
("®+d®) (r®+9

arrive at
LxV(E)=(K*(t)— () (I () = 8" (K" (t) -
I'(t)+ 8 (K’ (t) —kaK (1) )+
(@) — 1) (" O+a" ) (r ) +8" (1) -P ()G

(-

oice of the tuplé; andky, which proves the assertion. B

The existence ofky,ky) for every & > 0 is referred to as
practical stability ofE at the origin. In this light, the latter
result bares similarities with the results obtained forchcaly
synchonization by Montenbruck et al. [2013a,b]. Thus, we
know that we can render the influence of the uncertainties
arbitrarily small if we tune our gains up high enough. We want
to illustrate this on an example.

5 of Cases 1-3
from previous section. We introduce bounded uncertaimtfes
random type. In particular, we s&t= 10r and, i = 5r and,

P =3rand, andd = 2r and, wherer and denotes a function
generating a random variable from the interjval, 1] at every
time step. We simulate this scenario using the feedback (5)
under pinning scheme (28), (29), (13) at two different gains
one of which is(ky,k2) = (0.5,0.5), and one of which is
(k1,k2) = (3,3). For both cases, the integral curves of (1) and
(3) are plotted in Fig. 3.

Case 1 (ki,k2) = (0.5,0.5)). In the first scenario, we choose
control gains lower than the nominal gaifis1). The integral
curves of (1) and (3) are plotted in the left of Fig. 3. The
company (1) is driven by a conservative strategy and cotigtan
increases capital stock at a low rate. The start-up (3) vesei
uncertain measurements of the states of (1) but is capable of
increasing capital stock and converging intafaneighborhood
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