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Abstract: We investigate the synchronization of systems with adelitimcertainties. In doing so, we
establish a setup of diffusively coupled nonlinear systtrasare perturbed by unknown linear functions,
each. By assuming bounded solutions of the nominal uncdgyietems, we derive sufficient conditions
for boundedness of the solutions of the coupled systems wvittertainties. Next, using th@uUAD
condition, we derive conditions for the synchronizatioroerto remain bounded. Subsequently, we
investigate the impact of the coupling strength on this ldband find that the bound can be made
arbitrarily small for sufficiently large gains, thus esiabing criteria for practical synchronization.
Finally, we consider classes of uncertainties which comdisnatrices whose maximal singular value
is smaller than a specific value and show practical synchaioin for all uncertainties belonging to that
class. Therefore, we establish conditions for robust sgorihation with respect to such a class. Our
theoretical results are validated with a numerical exaropteposed of perturbed Van der Pol oscillators.

1. INTRODUCTION under perturbations. Networks of both, continuous and-dise
time linear systems with additive linear uncertaintiesehbgen

Synchronization is a widely studied phenomenon that has beghown to synchronize when applying a distributed contnel la
investigated both theoretically, e.g. by Mirollo and Sty designed with LMI and’Z, techniques, cf. Li et al. [2011].
[1990], Pecora and Carroll [1998] and experimentally, byg. 2 performace of the consensus of single-integrators under
Oud et al. [2006], Carroll and Pecora [1991]. Physical sygtenrPerturbations has been studied using the agreement protoco
however never match their mathematically modeled countedy Zelazo and Mesbahi [2009b]. Synthesis of heterogeneous
parts perfectly. The fundamental theory explaining syaehr linear systems under perturbations f#-robustness has been
nization does thus not quite explain the effects occurring ipresented using semi-definite programming for fixed topplog
real systems. These discrepancies motivate the study ef syid using Kruskal's algorithm for fixed dynamics in Zelazd an
chronization of uncertain systems, and, in particularussb Mesbahi[2009a].

synchronization. Moreover, robust synchronization is closely related tacéyo-

On the one hand, researchers have investigated robustrsynctiization of heterogeneous networks. An internal model-prin
nization in master-slave systems; Synchronization ofesgst Ciple for synchronization has been studied by Wieland and
with parameter uncertainties has been studied using glidinAllgdwer [2009] for nonlinear systems and by Wieland et al.
mode and variable structure control by Etemadi et al. [2006[2011], Seyboth et al. [2012], among others, for lineareyst.
and using adaptive control by Wang et al. [2008]. A synchrd=urthermore, we will excessively use the notioeofap vector
nization problem of systems under perturbations was solvéiglds, studied by DeLellis et al. [2009, 2011].

using variable structure control in Yau [2004] and estimati | e present paper, we study diffusively coupled homoge-

of switching gains in Yau and Lin [2005]. Sytems with ad+yeq5 nonlinear systems under additive linear (heteragesie
ditive nonlinear uncertainties can be synchronized emptpy |,,certainties. The uncertainty setup for a single system
observers, as it has been shown by Pogromsky and N'Jme”&épicted in Fig. 1.

[1998].

On the other hand, researchers have sought to investigate ro
bust synchronization in networks# and.7#, performance of
linear systems under perturbations has been investigatad w
suitable distributed controllers through Li et al. [201hpar7, g A
consensus of sytems under perturbations and coupling -uncer
tainties including time-delays has been studied usingaedu

order systems through Lin et al. [2008]. Das and Lewis [2010] X ui
propose adaptive control protocols at every node to solve a I > f() -~
synchronization problem of nonlinear heterogeneous syste

Xi
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Prior research has focused on designing control laws, ssichwghich is the uncoupled nominal system, whé&réd) = x; (0) is
pinning control, observers, state feedback, or couplirplys assumed for the sake of interpretability, is bounded by setlo
to achieve exact synchronization. We choose to leave the dyall of radiust plus its initial condition. That is, there exist
namics of the single nodes, as well as the network architefinite positive scalark, ¢, such that
ture, untouched. We do not want to impose additional control ) )
laws on the network or to single systems but only analyze 1€ (D17 < [1& (0)]]“ +
the effect of the diffusive coupling strength, herein mdetl
through a coupling gaik, on the synchronization behavior of ¢\, i 157 . if there exist finite positive scalais ¢, such
the systems, and, in particular, on the synchronizatioarerr that 2o

Therefore, compared to the literature presented above,ilve w ETF(&) < —c&T&+L, ©)

not be able to achieve exact synchronization. Instead, We wi .
y cf. Raffoul [2003]. For the average of all solutions undenco

sideration, and thus the solution we would potentially $yne
nize to, we have

Structure of the papeThe remainder of the paper is structured 1 N

as follows; In Section 2, we state the problem investigated s(t) = N.in (t), (4)
herein, including system and uncertainty setup, coupliagd _ o= _

assumptions. Section 3 contains our main results, where S@'d we describe the deviation of systérfrom s(t) as the
section 3.1 contains sufficient conditions for the boungsgn Synchronization erroe (t) = x; (t) —s(t).

of the coupled systems, and Subsection 3.2 shows how we 6@ approach the synchronization of the above systems by
guarantee boundedness of the synchronization error. In Syfacing them on the vertices of a directed, weighted gréph
section 3.3, the notion of practical synchronizabilitynéro-  encoded through its negative Laplacian= [aj]. Herein, an

synchronization by considering an entire class of unaertaiysed as input for systenmnd how much it is scaled in between,
ties. Section 4 validates our theoretical results by a nigaker %ielding

example composed of perturbed Van der Pol oscillators wi N
uncertainties and Section 5 concludes the paper. U= kaijx;, (5)
=1

L
=. )

Boundedness according to (2) can be shown using a quadratic

establish bounds for synchronization errors dependingtim b
the uncertainties and the coupling gains.

Notation.Variables are formatted italic, operators upright, and

sets blackboard boldR is the field of real numbers, B§" we where k fe R is a gain. WS. assum(a tha.‘ has Ian elgen- d
denote the space af-tuples of real numbers, and ™ vector of ones corresponding to the eigenvalue zero an

the space of matrices composedrofriuples. With® and all other eigenvalues negative. As a notational convention

@ we denote the direct product and direct sum, respectiveYVS W@ﬁ '@Vren W’V\\/’Vh%ﬁ}ﬁ’ {/s\lldeﬂnoed as {/c\)llloxvs.wl_

and diagx;) is the direct sum ok; @ --- @ xn, whereN can m=2 7 o ={We | mo rankW) = m—1,

be concluded from the context. By and 1, we mean the Max(spedV\{0}) <0}, 1n=[1---1] € R™, and we denote
identity of R™" and the vector of ones iR", respectively. the largest nonzero eigenvalueAdoby A = max(sped\ {0}).

If f:R"— RMis a function mapping; — f (x), then, with This is the interpretation of having diffusive couplingsween

a slight abuse of notation, by writingl® ) (-), we mean a the systems (1). Note also, that every negative Laplacian of
function (L, ® f) - RK" — RKM which is the stack d copies of a directed, connected graph of appropriate dimensiorfigatis

f and maps[xI---xif]T = [FT () fT(xk)]T. For norms these a.ssumptlons. _ .
(and also for induced norms), we write|. A transpose is Employing the coupling, we can write
expressed by superindexiigand an overdot abbreviate, x= (In® f) (X) + (diag(Ai) + A® In) X (6)
wheret is the time. Furthermore, mé&y is the maximum, as a shorthand notation for (1) under (5), wheyeis the
sup-) the supremum, spég the spectrum, and rafy the Kronecker productly ® f): RN" — RNNis the stacked vector
rank. A [0,00) — [0,00) function is said to be class?’, if of f(x) and diagAj) = A; @ --- @ An, Whered is the direct
it is zero at zero, strictly increasing, and continuous, and sum. Furthermore, differentiating (4), we get
[0,00)? — [0, function is class# %, if it is class.# in the 1 N N
first argument and decreasing to zero in the second argument.s = N Z (f (%) + Dixi + Z kaijj>

i= =1

2. PROBLEM STATEMENT 1N N
=As+ — f(x)+oie+ ) kajx
We consideN dynamical systems N £ ( (i) +Aie le A J)
% = T (%) + 0% +u, 1) N 1N
wherei is from the index se{1---N}, x € R"is the state of =4S+ (1N ® |n) (kA® |n)X+NZl(f (%) +4ie)
i=

systemi, A € R™" is its uncertaintyy; € R" its input, andf : N
R" — R"is identical for alli. In particular, the maximal singular ~ 1/ + 1

value ofj shall be given througle? = maxspe¢a 4;) and =As+ (1N ® '”) (AR In)e+ i;(f (6)+aie), (7)
f (%) is assumed to beuaD (P, w), i.e.(a—b)" (f (a) — f (b))
—(a—b)'P(a—b) < —w(a—b)" (a—b), with P some diag-
onal matrix andw some finite scalar, as introduced by DeLellis 3. MAIN RESULTS

et al. [2011]. We wi!l ofte_n also utilize the estima®e- wl, <

diln, wherely, is the identity ofR™". Furthermore, we assume The starting point for our analyses are networks of coupled
that every solution to the auxiliary systefn= f (&), & € R", nominal systems which synchronize to a common trajectory.

whereNA = 5N A



This is guaranteed through the assumption of hawiugD

vector fields under couplings of the assumed form, cf. Déd ell
et al. [2011]. In this section, we first present sufficient dien

tions for boundedness of the coupled systems in presencewwé are now in the position to discuss the geometrical inter-

[2003]) implies||x(t)||* < [|x(0)|* + '-g/ which concludes the
proof as||s|| < ||x||. |

uncertainties and then, as a second step, derive upper $oupgktation of our novel bounds’,c’. First, let us see thalt’

for the synchronization error depending on the uncerednti

3.1 Boundedness of the Averaged Solution

is larger thanL, linearly growing withN, and that larget’
lets our ball-like bound ors grow. Second, let us see theit
is linearly growing withc, that it is equal ta for the uncoupled
nominal case, that it can be chosen larger if the couplingfseor

The bound on the synchronization errors established later jincertainties become more negative and that lacgksts our

this paper will naturally depend on the supremum norms(by.

However,x(t) (and thuss(t)) can be destabilized by suitable

ball-like bound ors shrink.

A;. In such a case, a bound depending on the supremum nog® Synchronization with a Bounded Error
of s(t) would not be meaningful. As we want to exclude such
cases, we thus head to establish bounds gat reasoning with In general, we would warg; (t) to go to zero for ali. Notably,

assumptions regardinfg(-).

The functionf (&) under considerations shall be stacked

form (Iy ® f) (&) and, utilizing the above, the auxiliary system
& = (Iy® f) (&) is introduced, wheré € RN", and, for sake
of interpretability,é (0) = x(0) is assumed. Taking (3), we get

ETE < —cETE+LN, (8)
that is,& (t) is bounded by
1E @2 < 1€ O+ ©)

c’

this is not possible without additional assumptions; i A for

ir@nyi Wieland and Allgéwer [2009]. Instead, we want to state

conditions forg to remain small, dependent on our choicéof

Definition 1. N systems (1) under coupling (5) are said to
synchronize with a bounded error, if

le)[| <B(Ile(0)],t)+& sup [Is(T)],
o<r<t
and sup.; [|s(7)]| is finite, wheref3 is some class? .

function ande a finite positive scalar.
Theorem 2.ConsiderN systems (1) under coupling (5). Sup-

see Raffoul [2003]. We now argue that, under certain condpose thae W, f (-) is QUAD (P, w) with P— wl,, < qlp, A <0,

tions, this bound o induces a bound os
Theorem 1.Assume that there exist finite positive scalkrs
such thag," & < —c& & + L. Then, if

diag(Ai) + kA® Iy —clnn < 0, (20)
there exist finite positive scalalr§ ¢/, such thas(t) is bounded
by

L/
IS < Ix(O) I+ - (12)
Proof. Consider the Lyapunov function candidate
U= %xTx (12)
and its corresponding directional derivative
N
U= x'%. (13)
2
Substituting (1) together with (5), we get
N N
UZZLXiT (f(Xi)+AiXi+Zkanj>. (24)
i= =1

Consequently, utilizing the properties of the direct pratdand
the vector of ones,

U =x" (diag(li) + kA® In)x+x" (In® ) (X) (15)
follows. Furthermore, utilizing (8), we get
U <x' (diag(Ai) + kA®In)x—cx'x+LN.  (16)

Using (10), we can find a positive finite scatrsuch that
diag(Ai) + KA® In— lnn < —C'Inn, 17)
and additionally define some finite positive scdlasuch that

LN <L (18)
Taking this into account, we can as well write
x" (diag(Ai) + KA® In— Clnp) X+ LN < —cx"x+ L', (19)

instead of (17) and (18). Then, comparing (19) to (12) angl, (16
we see that the former is judt< —2c/U + L’ and thus (Raffoul

k such thatg+ max g; + kA < 0, there exist finite positive
scalard.,c, such thag," & < —c&' & +L and diag i) + kA®

In—clnn < 0. Then the systems (1) under coupling (5) synchro-

nize with a bounded error wheeds given through
__|diag(ai -2)|
—(q+max i +kA)

Proof. We consider the Lyapunov function candidate

1N
V== 20
> i;q & (20)
and its corresponding directional derivative
N N
V=yea=36 (x-9. (21)
2507

Now, substituting (1) together with (5) and (7), it followsat
N N
V=Se (f(x)+ax+ S (kajxj) —As—
2 2

_%i(f (X)) +Aje)) _% (1§®|n) (kA®I”>e)' (22)

Consequently, by substituting
1 X 1 ,
N JZlAjej =5 (1§® In) diag(bj) e,

subtractingy Y ; 6" s, kaijs, which is just zero since\ e
W, addingy¥; " § 31, f (x;) and subtracting ¥ ;' f (s),
which are both zero sincgl ; & = 0, we get

N N
V= i;qT(f (%) — f (8) +ix +le(ka,-,-x,-) -

z

(kaijs) —
1

J

iy % (1@ ® |n) diag(a)e— % (1@ ® |n) (KA® In) e).
(23)



Furthermore, utilizingg = x — s and theQUAD inequality 3.3 Practical Synchronization
together with the estimatg we get the upper bound
N N Nfovt\]/ ha\ﬁing donekthis, let us get:i bachk to thﬁ interpretatiodn
y T _ . a A of the influence ok on €. Reconsider that we have assume
Vs i;Q (qe—i—A.a Thist leka”e, As) ’ 24) that k is chosen such thag + o + kA < 0. Given this, we
N 1T ) can see that we can malearbitrarily small by choosing
where the termy ;&' & (1y @ In) (diag(dj)+ (kKA®In))e  sufficiently large. However, to establish the notion of piced
has been dropped for being zero (again reasonin@ﬁqta = synchronizability, where a hard bound ercan be designed
0). Collecting the products & ands, arbitrarily, we also have to know some upper bound for the
N ) supremum ofs. We have already established such a bound
S (25)

N . )
V< ZfT <(q|n+Ai)a + Z kaje) + (Ai —E) (resulting from the assumptlzons of Thzeorem 1) through
= = iugtl\S(T)ll > [IsM)l,

follows straightforward. We now remove the sums to be able to Ost L
henceforth u_se the compact notation ||s(t)||2 < ||x(0)|\2+ 5
V <e' (ginn+ diag(di) + kA 1n) e /

" ding(A B = sup [s(1)2 < [x(O) + 5 (30)
+e' diag(Ai —A) (In®s). (26) oo ret = o’

We substitutejinn +diag(4i) + kA® In < g+max o+ kA and  which follows from the WeierstraR extreme value theorem.
e' diag(Ai —A) (In®s) <|le]| |diag(Ai — D) || |in @S| to get  Definition 2. N'systems (1) under coupling (5) are said to be
) _ practically synchronizable, if, for any positive finite ¢be of
v<el (q+ maxo; + k/\) e+ |l ||diag(ai —B) || [In®s|. &, there exists a gaik, such that
@7) le®)] < B(le(0)].t) + £
Subsequently, choosikgsuch thatj+max g; +kA < 0, which  wheref is some class?”.Z function.
is always possible, abbreviating max by simply writing g Theorem 3.ConsiderN systems (1) under coupling (5). Sup-
and introducing a scald, 0 < 6 < 1, it follows, that pose thah e W, f (-) is QUAD (P, w) with P— wl, < gy, A <0,
v geTe(q+0+k/\)(1— 6)+ k such thatq+ max U'irJ'r kKA < OT there exist_ finite positive
T . _ scalard,c, such tha€;' & < —cé;' & +L and diag /i) + kA®
e'e(q+o+kA)0+|lell||diag(Ai - D) IIn@sll, (28) |, _cIny < 0. Then the systems (1) under coupling (5) are
) iao( A & ractically synchronizable for any gain
which leads to < 0 for |Jel| > L4244 -2)] P vy Y9

|
“oaroon 1IN @ sl and hence :
o e o NIXOPE @+ o)

|diag(ai — ) || )

et)|| < B(lle0)],t) + ———UL\/N sup ||s(t

el Bletono —(q+o+kA) OSTSptH @I Proof. By the above assumptions, we can reconsider Theorem
(29) 2 and hence conclude

where sup.; ||s(1)|| is finite by means of Theorem 1, which g

thus conciiss the proo. el = B + oy VN sup sl
. . — . . (31)

Remark. Itis possible to assum& = 0, since otherwisé (x) | aqdition, taking the consequence of Theorem 1, we have

can be redefined td (x) + Ax (if the latter is still QUAD). L/

Taking this into account, the given above reduces te = s[> < [x(0)]|*+ L (32)

|| diagai) |

—(gtotkA) = 7(q+g+k/\)' and thus, taking (30), also

Given the above theorem, we can now interpret its conse- le®)l <B(/[e(0)[],t)+

guences. The more the uncertainties differ, (or, congideri o , NU

the remark, the larger the uncertainties become,) the darge +————\/N||x(0)]|“+ (33)

the impact ofs on e becomes. On the other hand, the larger o (Q+o+kh) ¢
k becomes, the smaller the impact ®bn e becomes. This Taking any arbitrary value foag’, we can always choosde such
interpretation shall be utilized later to establish theiobf that

practical synchronizability. First, however, let us cafesithe o\ /N[x(0)]*+ Y + (g+ o)

influence thaty has. Naturally, linear vector fields agAD. k> — o : (34)
Thus, let us now take a little detour and consider the ca I .

where f () is a linear mapF. As we take the step from Now, /resul;shtutmg (34)into (33), we halfe(t) | < 5(||(0)]].
(23) to (24), we could see that we would instead hsive: t) + &', which hence concludes the proof. u
PR} (FQ + e +Dis+ Y kaije) — ES) and can hence for- The above theorem states that, loosely speaking, we cagslwa
mulate a corollary regarding the linear case. choosek large enough to make the error converge into an

L . ) arbitrarily small ball.
Corollary. ConsideringN linear systems = Fx; + Ajx; + Ui,

F € R™" under coupling (5). Suppose that: W, andk such 3.4 Robust Synchronization

that ||In ® F|| + max g; + kA < 0O, then the systems (1) under

coupling (5) synchronize with a bounded error wheiggiven  So far, we have interpreted the influencekpfA, and q on
throughe = W our error bound. It remains to discuss the influencecof



and how this interpretation is related to the notion of rabusrheith Van der Pol oscillator in two dimensional form is given

synchronization. Therefore, first, let us suppose thatAall
are from some compact sBtC R™" containing all possible

uncertainties. Suppose thaiis the set of all maximal singular

values of all elements d given through

d= {o ‘A eD,0?= maxspec(ATA) } . (35)
Then, certainlyg < maxd = d’, and thus
g d
< . 36
—(@+0+kA) = —(q+d' +KA) (36)

through

>'<i1=EXiz + Miixa + u1, (40)

. 1
X52—01<X52—§Xi32—xi1) + DiX2 4+ Uz,  (41)
—— ~—

uncertainties

couplings
Van der Pol equation

where we abbreviat" = [xi; Xi2] andu” = [ui1 Uip], respec-
tively. Also, we choosex to be equal to 5. In addition, the

Definition 3. Nsystems (1) under coupling (5) are said to be rodiffusive all-to-all coupling lawA = —6lg+ 16T ® 1g is applied,

bustly synchronizable with respectlioif, for anyAy,--- ,Ax €
D and positive finite choice &f , there exists a gaik, such that

le®)[ <B(le(Q)],t) + ¢,

wheref3 is some class?”.Z function.

Theorem 4.ConsiderN systems (1) with\,--- ,Ay € D and
D c R™" compact under coupling (5). Suppose that W,

f () is QUAD(P,w) with P— wly < gln, A < 0, k such that
q+d +kA < 0, there exist finite positive scalatsc, such
thaté," & < —c&" & + L andd’ + KA® I — clyn < 0. Then the
systems (1) under coupling (5) are robustly synchronizédsle

any gain
d'/[INx(0) [ + N 1 (q+d') ¢

)

so thatA = —6. Notably, DeLellis et al. [2011] have shown
that this setup achieves exact synchronization (which iis sy
chronization with a bounded error aad= 0) for k > )—‘f if we
setA; = Ay = 0, which is also a consequence of Theorem 2. In
particular, the Van der Pol oscillator has been shown to be-se
contracting by Wang and Slotine [2005] and tlqusaD(P, w)
with P = l,w, allowing for q to be any value greater than or
equal to zero (DeLellis et al. [2011]).

Here, we consider uncertainties and investigate their anpa
on &. The uncertainties under consideration are distributed
randomly between 0 and0.5. The Van der Pol oscillator loses
its periodic orbit for larger uncertainties. In this exasple
have ||diag(4; — &) || = 0.2089 ando = 0.4769. According

to Theorem 2k has to be chosen such thatl®69— 6k <

0, which is true fork > 0.0795. Therefore, we would have

Proof. We structure our proof into three steps. First, let ug — %89[6‘(, This setting is simulated in MrLAB using
show how the average soluti(t) in the above setup is still ode45 at three different gains.0, 1, and 10. The respective
bounded. Second, how systems (1) under coupling (5) ate s8lipremum norms of are found experimentally (thus solving
synchronizing with a bounded error, and third, how systeths (the problem first, before knowing the bounds). The solutions

under coupling (5) are still practically synchronizable.

Let us thus consider the assumption tfat KA® I — clyn < 0.
Notably,d’ + kA® In— clnn > 0 + KAR Iy — cInp > diag(4y) +

for x;; andx;, are plotted for all at the different coupling gains
in Figure 2 together with the errofig|| and their upper bounds
given through Theorem 2.

KA® In — clnn. If the former is less or equal to zero, then soThe plots show, that the errors hold the previously estagds

is the latter. we can find a positive finite scatir such that

bounds well. Also, it turns out, that the bounds become quite

d'+KA® In — Clnn < —C'Inn, and additionally define some finite small for comparatively small gains. The solutions agret wi

positive scalat.’ such that.N < L’ and hence conclude that
is bounded bys(t)|* < [x(0)|*+ &

Consequently, applying Theorem 2, we get

le)l < B (Je@)] .1+ 1420 D)l

oo VN sup s(o].

o<r<t
(37)
Substituting our bound faand (36), we have

o > NU
le®)ll SB(He(0)||at)+m INX(O)]| t—
(38)

Last, taking any arbitrary value faf, we can always choose
such that

d'/INx(0)]|2+ N 4 (q+d) &
> VINX(0)[[*+ = + (g +d) (39)

g'A ’
and substituté back to getle(t)|| < B (]|le(0)]||,t) + &', which
thus concludes the proof. |

4. NUMERICAL EXAMPLE

our interpretations as for the smaller gains, the solutiensin
close to each other and then approach each other with aybitra
precision as the gain is increased.

5. CONCLUSION

We have presented a synchronization problem for homoge-
neous nonlinear systems, that each are boundedQanad.
These systems were subject to linear additive uncertaintie
and equipped with diffusive couplings of adjustable stteng
We have referred to some literature stating that such néswor
would synchronize when assuming zero uncertainties. Gonse
quently, we have derived conditions for the uncertain netwo
to remain bounded, arguing with the boundedness conditions
for the single nominal systems. Using this, we could derive
sufficient conditions for the synchronization error to réma
bounded, and, investigating the latter further, we analyirst

the influence of our gain on this bound, yielding arbitrarily
small bounds for sufficiently large gains (and thus prattiga-
chronization), and second the influence of our uncertamie

this bound, yielding bounds for a whole class of uncertati

We want to illustrate the above deductions by an exemplafand thus robust synchronization). We have validated @ulte

setup consisting of 6 Van der Pol oscillators with uncettam
under diffusive coupling at different gains.

with an exemplary setup composed of perturbed Van der Pol
oscillators.



Fig.
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