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Abstract: We investigate the synchronization of systems with additive uncertainties. In doing so, we
establish a setup of diffusively coupled nonlinear systemsthat are perturbed by unknown linear functions,
each. By assuming bounded solutions of the nominal uncoupled systems, we derive sufficient conditions
for boundedness of the solutions of the coupled systems withuncertainties. Next, using theQUAD
condition, we derive conditions for the synchronization error to remain bounded. Subsequently, we
investigate the impact of the coupling strength on this bound and find that the bound can be made
arbitrarily small for sufficiently large gains, thus establishing criteria for practical synchronization.
Finally, we consider classes of uncertainties which consist of matrices whose maximal singular value
is smaller than a specific value and show practical synchronization for all uncertainties belonging to that
class. Therefore, we establish conditions for robust synchronization with respect to such a class. Our
theoretical results are validated with a numerical examplecomposed of perturbed Van der Pol oscillators.

1. INTRODUCTION

Synchronization is a widely studied phenomenon that has been
investigated both theoretically, e.g. by Mirollo and Strogatz
[1990], Pecora and Carroll [1998] and experimentally, e.g.by
Oud et al. [2006], Carroll and Pecora [1991]. Physical sytems
however never match their mathematically modeled counter-
parts perfectly. The fundamental theory explaining synchro-
nization does thus not quite explain the effects occurring in
real systems. These discrepancies motivate the study of syn-
chronization of uncertain systems, and, in particular, robust
synchronization.

On the one hand, researchers have investigated robust synchro-
nization in master-slave systems; Synchronization of systems
with parameter uncertainties has been studied using sliding-
mode and variable structure control by Etemadi et al. [2006],
and using adaptive control by Wang et al. [2008]. A synchro-
nization problem of systems under perturbations was solved
using variable structure control in Yau [2004] and estimation
of switching gains in Yau and Lin [2005]. Sytems with ad-
ditive nonlinear uncertainties can be synchronized employing
observers, as it has been shown by Pogromsky and Nijmeijer
[1998].

On the other hand, researchers have sought to investigate ro-
bust synchronization in networks;H2 andH∞ performance of
linear systems under perturbations has been investigated with
suitable distributed controllers through Li et al. [2011] andH∞
consensus of sytems under perturbations and coupling uncer-
tainties including time-delays has been studied using reduced
order systems through Lin et al. [2008]. Das and Lewis [2010]
propose adaptive control protocols at every node to solve a
synchronization problem of nonlinear heterogeneous systems
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under perturbations. Networks of both, continuous and discrete-
time linear systems with additive linear uncertainties have been
shown to synchronize when applying a distributed control law
designed with LMI andH∞ techniques, cf. Li et al. [2011].
H2 performace of the consensus of single-integrators under
perturbations has been studied using the agreement protocol
by Zelazo and Mesbahi [2009b]. Synthesis of heterogeneous
linear systems under perturbations forH2-robustness has been
presented using semi-definite programming for fixed topology
and using Kruskal’s algorithm for fixed dynamics in Zelazo and
Mesbahi [2009a].

Moreover, robust synchronization is closely related to synchro-
nization of heterogeneous networks. An internal model prin-
ciple for synchronization has been studied by Wieland and
Allgöwer [2009] for nonlinear systems and by Wieland et al.
[2011], Seyboth et al. [2012], among others, for linear systems.
Furthermore, we will excessively use the notion ofQUAD vector
fields, studied by DeLellis et al. [2009, 2011].

In the present paper, we study diffusively coupled homoge-
neous nonlinear systems under additive linear (heterogeneous)
uncertainties. The uncertainty setup for a single systemi is
depicted in Fig. 1.
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Fig. 1. Uncertainty setup for a single systemi: The nonlinear
function f (·) is assumed identical for all systems, but the
additive uncertainty∆i is heterogeneous.



Prior research has focused on designing control laws, such as
pinning control, observers, state feedback, or coupling graphs
to achieve exact synchronization. We choose to leave the dy-
namics of the single nodes, as well as the network architec-
ture, untouched. We do not want to impose additional control
laws on the network or to single systems but only analyze
the effect of the diffusive coupling strength, herein modelled
through a coupling gaink, on the synchronization behavior of
the systems, and, in particular, on the synchronization error.
Therefore, compared to the literature presented above, we will
not be able to achieve exact synchronization. Instead, we will
establish bounds for synchronization errors depending on both,
the uncertainties and the coupling gains.

Structure of the paper.The remainder of the paper is structured
as follows; In Section 2, we state the problem investigated
herein, including system and uncertainty setup, couplings, and
assumptions. Section 3 contains our main results, where Sub-
section 3.1 contains sufficient conditions for the boundedness
of the coupled systems, and Subsection 3.2 shows how we can
guarantee boundedness of the synchronization error. In Sub-
section 3.3, the notion of practical synchronizability is intro-
duced and Subsection 3.4 extends the previous results to robust
synchronization by considering an entire class of uncertain-
ties. Section 4 validates our theoretical results by a numerical
example composed of perturbed Van der Pol oscillators with
uncertainties and Section 5 concludes the paper.

Notation.Variables are formatted italic, operators upright, and
sets blackboard bold.R is the field of real numbers, byRn we
denote the space ofn-tuples of real numbers, and byRn×m

the space of matrices composed ofm n-tuples. With⊗ and
⊕ we denote the direct product and direct sum, respectively
and diag(xi) is the direct sum ofx1 ⊕ ·· · ⊕ xN, whereN can
be concluded from the context. ByIn and 1n we mean the
identity of Rn×n and the vector of ones inRn, respectively.
If f : Rn → R

m is a function mappingxi 7→ f (xi), then, with
a slight abuse of notation, by writing(1k⊗ f )(·), we mean a
function(1k⊗ f ) :Rkn→R

km, which is the stack ofk copies of

f and maps
[
x⊤1 · · ·x⊤k

]⊤ 7→
[

f⊤ (x1) · · · f⊤ (xk)
]⊤

. For norms
(and also for induced norms), we write‖·‖. A transpose is
expressed by superindexing⊤ and an overdot abbreviatesddt ,
where t is the time. Furthermore, max(·) is the maximum,
sup(·) the supremum, spec(·) the spectrum, and rank(·) the
rank. A [0,∞ ) → [0,∞ ) function is said to be classK , if
it is zero at zero, strictly increasing, and continuous, anda
[0,∞ )2 → [0,∞ ) function is classK L , if it is classK in the
first argument and decreasing to zero in the second argument.

2. PROBLEM STATEMENT

We considerN dynamical systems
ẋi = f (xi)+∆ixi +ui, (1)

wherei is from the index set{1· · ·N}, xi ∈ R
n is the state of

systemi, ∆i ∈ R
n×n is its uncertainty,ui ∈ R

n its input, andf :
R

n →R
n is identical for alli. In particular, the maximal singular

value of∆i shall be given throughσ2
i = maxspec

(
∆⊤

i ∆i
)

and

f (xi) is assumed to beQUAD(P,ω), i.e.(a−b)⊤ ( f (a)− f (b))
−(a−b)⊤P(a−b) ≤−ω (a−b)⊤ (a−b), with P some diag-
onal matrix andω some finite scalar, as introduced by DeLellis
et al. [2011]. We will often also utilize the estimateP−ω In ≤
qi In, whereIn is the identity ofRn×n. Furthermore, we assume
that every solution to the auxiliary systeṁξi = f (ξi), ξi ∈ R

n,

which is the uncoupled nominal system, whereξi (0) = xi (0) is
assumed for the sake of interpretability, is bounded by a closed
ball of radius L

c plus its initial condition. That is, there exist
finite positive scalarsL, c, such that

‖ξi (t)‖2 ≤ ‖ξi (0)‖2+
L
c
. (2)

Boundedness according to (2) can be shown using a quadratic
function 1

2ξ⊤
i ξi if there exist finite positive scalarsL, c, such

that
ξ⊤

i f (ξi)≤−cξ⊤
i ξi +L, (3)

cf. Raffoul [2003]. For the average of all solutions under con-
sideration, and thus the solution we would potentially synchro-
nize to, we have

s(t) =
1
N

N

∑
i=1

xi (t) , (4)

and we describe the deviation of systemi from s(t) as the
synchronization errorei (t) = xi (t)− s(t).

We approach the synchronization of the above systems by
placing them on the vertices of a directed, weighted graphG ,
encoded through its negative LaplacianA = [ai j ]. Herein, an
elementai j determines, whether or not the state of systemj is
used as input for systemi and how much it is scaled in between,
yielding

ui =
N

∑
j=1

kai j x j , (5)

where k ∈ R is a gain. We assume thatA has an eigen-
vector of ones corresponding to the eigenvalue zero and
all other eigenvalues negative. As a notational convention,
we write A ∈ W, where W is defined as follows:W =
⋃∞

m=2W
m, Wm = {W ∈ R

m×m |W1m = 0, rank(W) = m−1,
max(specW \ {0})< 0}, 1m = [1· · ·1]⊤ ∈ R

m, and we denote
the largest nonzero eigenvalue ofA by λ = max(specA\ {0}).
This is the interpretation of having diffusive couplings between
the systems (1). Note also, that every negative Laplacian of
a directed, connected graph of appropriate dimension satisfies
these assumptions.

Employing the coupling, we can write
ẋ= (1N⊗ f ) (x)+ (diag(∆i)+A⊗ In)x (6)

as a shorthand notation for (1) under (5), where⊗ is the
Kronecker product,(1N ⊗ f ) : RNn→R

Nn is the stacked vector
of f (xi) and diag(∆i) = ∆1 ⊕ ·· · ⊕∆N, where⊕ is the direct
sum. Furthermore, differentiating (4), we get

ṡ=
1
N

N

∑
i=1

(

f (xi)+∆ixi +
N

∑
j=1

kai j x j

)

= ∆s+
1
N

N

∑
i=1

(

f (xi)+∆iei +
N

∑
j=1

kai j x j

)

= ∆s+
1
N

(

1⊤N ⊗ In
)

(kA⊗ In)x+
1
N

N

∑
i=1

( f (xi)+∆iei)

= ∆s+
1
N

(

1⊤N ⊗ In
)

(kA⊗ In)e+
1
N

N

∑
i=1

( f (xi)+∆iei) , (7)

whereN∆ = ∑N
i=1 ∆i .

3. MAIN RESULTS

The starting point for our analyses are networks of coupled
nominal systems which synchronize to a common trajectory.



This is guaranteed through the assumption of havingQUAD
vector fields under couplings of the assumed form, cf. DeLellis
et al. [2011]. In this section, we first present sufficient condi-
tions for boundedness of the coupled systems in presence of
uncertainties and then, as a second step, derive upper bounds
for the synchronization error depending on the uncertainties.

3.1 Boundedness of the Averaged Solution

The bound on the synchronization errors established later in
this paper will naturally depend on the supremum norm ofs(t).
However,x(t) (and thuss(t)) can be destabilized by suitable
∆i . In such a case, a bound depending on the supremum norm
of s(t) would not be meaningful. As we want to exclude such
cases, we thus head to establish bounds ons, yet reasoning with
assumptions regardingf (·).
The function f (ξi) under considerations shall be stacked in
form (1N ⊗ f )(ξ ) and, utilizing the above, the auxiliary system
ξ̇ = (1N ⊗ f )(ξ ) is introduced, whereξ ∈ R

Nn, and, for sake
of interpretability,ξ (0) = x(0) is assumed. Taking (3), we get

ξ⊤ξ̇ ≤−cξ⊤ξ +LN, (8)
that is,ξ (t) is bounded by

‖ξ (t)‖2 ≤ ‖ξ (0)‖2+
LN
c
, (9)

see Raffoul [2003]. We now argue that, under certain condi-
tions, this bound onξ induces a bound ons.
Theorem 1.Assume that there exist finite positive scalarsL,c
such thatξ⊤

i ξ̇i ≤−cξ⊤
i ξi +L. Then, if

diag(∆i)+ kA⊗ In− cINn< 0, (10)
there exist finite positive scalarsL′,c′, such thats(t) is bounded
by

‖s(t)‖2 ≤ ‖x(0)‖2+
L′

c′
. (11)

Proof. Consider the Lyapunov function candidate

U =
1
2

x⊤x (12)

and its corresponding directional derivative

U̇ =
N

∑
i=1

x⊤i ẋi . (13)

Substituting (1) together with (5), we get

U̇ =
N

∑
i=1

x⊤i

(

f (xi)+∆ixi +
N

∑
j=1

kai j x j

)

. (14)

Consequently, utilizing the properties of the direct product and
the vector of ones,

U̇ = x⊤ (diag(∆i)+ kA⊗ In)x+ x⊤ (1N⊗ f ) (x) (15)
follows. Furthermore, utilizing (8), we get

U̇ ≤ x⊤ (diag(∆i)+ kA⊗ In)x− cx⊤x+LN. (16)
Using (10), we can find a positive finite scalarc′, such that

diag(∆i)+ kA⊗ In− cINn≤−c′INn, (17)
and additionally define some finite positive scalarL′ such that

LN ≤ L′
. (18)

Taking this into account, we can as well write

x⊤ (diag(∆i)+ kA⊗ In− cINn)x+LN ≤−c′x⊤x+L′
, (19)

instead of (17) and (18). Then, comparing (19) to (12) and (16),
we see that the former is justU̇ ≤−2c′U +L′ and thus (Raffoul

[2003]) implies‖x(t)‖2 ≤ ‖x(0)‖2 + L′
c′ , which concludes the

proof as‖s‖ ≤ ‖x‖. �

We are now in the position to discuss the geometrical inter-
pretation of our novel boundsL′,c′. First, let us see thatL′

is larger thanL, linearly growing withN, and that largerL′

lets our ball-like bound ons grow. Second, let us see thatc′

is linearly growing withc, that it is equal toc for the uncoupled
nominal case, that it can be chosen larger if the couplings orthe
uncertainties become more negative and that largerc′ lets our
ball-like bound onsshrink.

3.2 Synchronization with a Bounded Error

In general, we would wantei (t) to go to zero for alli. Notably,
this is not possible without additional assumptions if∆i 6= ∆ for
any i Wieland and Allgöwer [2009]. Instead, we want to state
conditions forei to remain small, dependent on our choice ofk.
Definition 1. N systems (1) under coupling (5) are said to
synchronize with a bounded error, if

‖e(t)‖ ≤ β (‖e(0)‖ , t)+ ε sup
0≤τ≤t

‖s(τ)‖ ,

and sup0≤τ≤t ‖s(τ)‖ is finite, whereβ is some classK L

function andε a finite positive scalar.
Theorem 2.ConsiderN systems (1) under coupling (5). Sup-
pose thatA∈W, f (·) is QUAD(P,ω) with P−ω In ≤ qIn, λ < 0,
k such thatq+ maxi σi + kλ < 0, there exist finite positive
scalarsL,c, such thatξ⊤

i ξ̇i ≤−cξ⊤
i ξi +L and diag(∆i)+kA⊗

In−cINn≤ 0. Then the systems (1) under coupling (5) synchro-
nize with a bounded error whereε is given through

ε =

∥
∥diag

(
∆i −∆

)∥
∥

−(q+maxi σi + kλ )
√

N.

Proof. We consider the Lyapunov function candidate

V =
1
2

N

∑
i=1

e⊤i ei (20)

and its corresponding directional derivative

V̇ =
N

∑
i=1

e⊤i ėi =
N

∑
i=1

e⊤i (ẋi − ṡ) . (21)

Now, substituting (1) together with (5) and (7), it follows that

V̇ =
N

∑
i=1

e⊤i
(

f (xi)+∆ixi +
N

∑
j=1

(kai j x j)−∆s−

− 1
N

N

∑
j=1

(
f (x j)+∆ jej

)
− 1

N

(

1⊤N ⊗ In
)

(kA⊗ In)e
)

. (22)

Consequently, by substituting

1
N

N

∑
j=1

∆ jej =
1
N

(

1⊤N ⊗ In
)

diag(∆ j)e,

subtracting∑N
i=1e⊤i ∑N

j=1kai j s, which is just zero sinceA ∈
W, adding∑N

i=1e⊤i
1
N ∑N

j=1 f (x j) and subtracting∑N
i=1e⊤i f (s),

which are both zero since∑N
i=1ei = 0, we get

V̇ =
N

∑
i=1

e⊤i
(

f (xi)− f (s)+∆ixi +
N

∑
j=1

(kai j x j)−
N

∑
j=1

(kai j s)−

−∆s− 1
N

(

1⊤N ⊗ In
)

diag(∆ j)e− 1
N

(

1⊤N ⊗ In
)

(kA⊗ In)e
)

.

(23)



Furthermore, utilizingei = xi − s and theQUAD inequality
together with the estimateq, we get the upper bound

V̇ ≤
N

∑
i=1

e⊤i

(

qei +∆iei +∆is+
N

∑
j=1

kai j ej −∆s

)

, (24)

where the term∑N
i=1e⊤i

1
N

(
1⊤N ⊗ In

) (
diag(∆ j)+ (kA⊗ In)

)
e

has been dropped for being zero (again reasoning that∑N
i=1ei =

0). Collecting the products ofei ands,

V̇ ≤
N

∑
i=1

e⊤i

(

(qIn+∆i)ei +
N

∑
j=1

kai j ej +
(
∆i −∆

)
s

)

(25)

follows straightforward. We now remove the sums to be able to
henceforth use the compact notation

V̇ ≤e⊤ (qINn+diag(∆i)+ kA⊗ In)e

+e⊤diag
(
∆i −∆

)
(1N⊗ s) . (26)

We substituteqINn+diag(∆i)+kA⊗ In ≤ q+maxi σi +kλ and
e⊤diag

(
∆i −∆

)
(1N ⊗ s)≤‖e‖

∥
∥diag

(
∆i −∆

)∥
∥ ‖1N ⊗ s‖ to get

V̇ ≤ e⊤
(

q+max
i

σi + kλ
)

e+ ‖e‖
∥
∥diag

(
∆i −∆

)∥
∥‖1N ⊗ s‖ .

(27)
Subsequently, choosingk such thatq+maxi σi +kλ < 0, which
is always possible, abbreviating maxi σi by simply writing σ
and introducing a scalarθ , 0< θ < 1, it follows, that

V̇ ≤e⊤e(q+σ + kλ )(1−θ )+
e⊤e(q+σ + kλ )θ + ‖e‖

∥
∥diag

(
∆i −∆

)∥
∥‖1N ⊗ s‖ , (28)

which leads tȯV < 0 for‖e‖≥ ‖diag(∆i−∆)‖
−θ(q+σ+kλ ) ‖1N ⊗ s‖ and hence

to

‖e(t)‖ ≤ β (‖e(0)‖ , t)+
∥
∥diag

(
∆i −∆

)∥
∥

−(q+σ + kλ )
√

N sup
0≤τ≤t

‖s(τ)‖
(29)

where sup0≤τ≤t ‖s(τ)‖ is finite by means of Theorem 1, which
thus concludes the proof. �

Remark. It is possible to assume∆ = 0, since otherwisef (xi)
can be redefined tof (xi) + ∆xi (if the latter is still QUAD).
Taking this into account, theε given above reduces toε =
‖diag(∆i)‖

−(q+σ+kλ ) ≤
σ

−(q+σ+kλ ) .

Given the above theorem, we can now interpret its conse-
quences. The more the uncertainties differ, (or, considering
the remark, the larger the uncertainties become,) the larger
the impact ofs on e becomes. On the other hand, the larger
k becomes, the smaller the impact ofs on e becomes. This
interpretation shall be utilized later to establish the notion of
practical synchronizability. First, however, let us consider the
influence thatq has. Naturally, linear vector fields areQUAD.
Thus, let us now take a little detour and consider the case
where f (·) is a linear mapF . As we take the step from
(23) to (24), we could see that we would instead haveV̇ =

∑N
i=1

(

Fei +∆iei +∆is+∑N
j=1kai j ej −∆s

)

and can hence for-

mulate a corollary regarding the linear case.

Corollary. ConsideringN linear systems ˙xi = Fxi +∆ixi +ui,
F ∈ R

n×n under coupling (5). Suppose thatA∈W, andk such
that ‖IN ⊗F‖+maxi σi + kλ < 0, then the systems (1) under
coupling (5) synchronize with a bounded error whereε is given
throughε = σ

−(‖IN⊗F‖+σ+kλ ) .

3.3 Practical Synchronization

Now having done this, let us get back to the interpretation
of the influence ofk on ε. Reconsider that we have assumed
that k is chosen such thatq+ σ + kλ < 0. Given this, we
can see that we can makeε arbitrarily small by choosingk
sufficiently large. However, to establish the notion of practical
synchronizability, where a hard bound one can be designed
arbitrarily, we also have to know some upper bound for the
supremum ofs. We have already established such a bound
(resulting from the assumptions of Theorem 1) through

sup
0≤τ≤t

‖s(τ)‖2 ≥ ‖s(t)‖2
,

‖s(t)‖2 ≤ ‖x(0)‖2+
L′

c′

⇒ sup
0≤τ≤t

‖s(τ)‖2 ≤ ‖x(0)‖2+
L′

c′
, (30)

which follows from the Weierstraß extreme value theorem.
Definition 2. Nsystems (1) under coupling (5) are said to be
practically synchronizable, if, for any positive finite choice of
ε ′, there exists a gaink, such that

‖e(t)‖ ≤ β (‖e(0)‖ , t)+ ε ′,
whereβ is some classK L function.
Theorem 3.ConsiderN systems (1) under coupling (5). Sup-
pose thatA∈W, f (·) is QUAD(P,ω) with P−ω In ≤ qIn, λ < 0,
k such thatq+ maxi σi + kλ < 0, there exist finite positive
scalarsL,c, such thatξ⊤

i ξ̇i ≤−cξ⊤
i ξi +L and diag(∆i)+kA⊗

In − cINn ≤ 0. Then the systems (1) under coupling (5) are
practically synchronizable for any gain

k≥−
σ
√

N‖x(0)‖2+ NL′
c′ +(q+σ)ε ′

ε ′λ
.

Proof. By the above assumptions, we can reconsider Theorem
2 and hence conclude

‖e(t)‖ ≤ β (‖e(0)‖ , t)+ σ
−(q+σ + kλ )

√
N sup

0≤τ≤t
‖s(τ)‖ .

(31)
In addition, taking the consequence of Theorem 1, we have

‖s(t)‖2 ≤ ‖x(0)‖2+
L′

c′
, (32)

and thus, taking (30), also
‖e(t)‖ ≤β (‖e(0)‖ , t)+

+
σ

−(q+σ + kλ )

√

N‖x(0)‖2+
NL′

c′
. (33)

Taking any arbitrary value forε ′, we can always choosek, such
that

k≥−
σ
√

N‖x(0)‖2+ NL′
c′ +(q+σ)ε ′

ε ′λ
. (34)

Now, resubstituting (34) into (33), we have‖e(t)‖≤β
(∥
∥e
(
0
)∥
∥,

t
)
+ ε ′, which hence concludes the proof. �

The above theorem states that, loosely speaking, we can always
choosek large enough to make the error converge into an
arbitrarily small ball.

3.4 Robust Synchronization

So far, we have interpreted the influence ofk, λ , and q on
our error bound. It remains to discuss the influence ofσ



and how this interpretation is related to the notion of robust
synchronization. Therefore, first, let us suppose that all∆i
are from some compact setD ⊂ R

n×n containing all possible
uncertainties. Suppose thatd is the set of all maximal singular
values of all elements ofD given through

d =
{

σ
∣
∣
∣∆ ∈D,σ2 = maxspec

(

∆⊤∆
)}

. (35)

Then, certainly,σ ≤ maxd = d′, and thus
σ

−(q+σ + kλ )
≤ d′

−(q+d′+ kλ )
. (36)

Definition 3. Nsystems (1) under coupling (5) are said to be ro-
bustly synchronizable with respect toD, if, for any∆1, · · · ,∆N ∈
D and positive finite choice ofε ′, there exists a gaink, such that

‖e(t)‖ ≤ β (‖e(0)‖ , t)+ ε ′,
whereβ is some classK L function.
Theorem 4.ConsiderN systems (1) with∆1, · · · ,∆N ∈ D and
D ⊂ R

n×n compact under coupling (5). Suppose thatA ∈ W,
f (·) is QUAD(P,ω) with P− ω In ≤ qIn, λ < 0, k such that
q+ d′ + kλ < 0, there exist finite positive scalarsL,c, such
thatξ⊤

i ξ̇i ≤ −cξ⊤
i ξi +L andd′+ kA⊗ In− cINn ≤ 0. Then the

systems (1) under coupling (5) are robustly synchronizablefor
any gain

k≥−
d′
√

‖Nx(0)‖2+ NL′
c′ +(q+d′)ε ′

ε ′λ
.

Proof. We structure our proof into three steps. First, let us
show how the average solutions(t) in the above setup is still
bounded. Second, how systems (1) under coupling (5) are still
synchronizing with a bounded error, and third, how systems (1)
under coupling (5) are still practically synchronizable.

Let us thus consider the assumption thatd′+kA⊗ In−cINn≤ 0.
Notably,d′+kA⊗ In−cINn≥ σ +kA⊗ In−cINn≥ diag(∆i)+
kA⊗ In − cINn. If the former is less or equal to zero, then so
is the latter. we can find a positive finite scalarc′, such that
d′+kA⊗ In−cINn≤−c′INn, and additionally define some finite
positive scalarL′ such thatLN ≤ L′ and hence conclude thats
is bounded by‖s(t)‖2 ≤ ‖x(0)‖2+ L′

c′ .

Consequently, applying Theorem 2, we get

‖e(t)‖ ≤ β (‖e(0)‖ , t)+
∥
∥diag

(
∆i −∆

)∥
∥

−(q+σ + kλ )
√

N sup
0≤τ≤t

‖s(τ)‖ .
(37)

Substituting our bound forsand (36), we have

‖e(t)‖ ≤ β (‖e(0)‖ , t)+ d′

−(q+d′+ kλ )

√

‖Nx(0)‖2+
NL′

c′
.

(38)

Last, taking any arbitrary value forε ′, we can always choosek,
such that

k≥−
d′
√

‖Nx(0)‖2+ NL′
c′ +(q+d′)ε ′

ε ′λ
, (39)

and substitutek back to get‖e(t)‖ ≤ β (‖e(0)‖ , t)+ ε ′, which
thus concludes the proof. �

4. NUMERICAL EXAMPLE

We want to illustrate the above deductions by an exemplary
setup consisting of 6 Van der Pol oscillators with uncertainties
under diffusive coupling at different gains.

The ith Van der Pol oscillator in two dimensional form is given
through

ẋi1 =
1
α

xi2 + ∆i1xi1 + ui1, (40)

ẋi2 =α
(

xi2−
1
3

x3
i2− xi1

)

︸ ︷︷ ︸

Van der Pol equation

+ ∆i2xi2
︸ ︷︷ ︸

uncertainties

+ ui2,
︸︷︷︸

couplings

(41)

where we abbreviatex⊤i = [xi1 xi2] andu⊤i = [ui1 ui2], respec-
tively. Also, we chooseα to be equal to 5. In addition, the
diffusive all-to-all coupling lawA=−6I6+1⊤6 ⊗16 is applied,
so thatλ = −6. Notably, DeLellis et al. [2011] have shown
that this setup achieves exact synchronization (which is syn-
chronization with a bounded error andε = 0) for k >

q
λ if we

set∆1 = ∆2 = 0, which is also a consequence of Theorem 2. In
particular, the Van der Pol oscillator has been shown to be semi-
contracting by Wang and Slotine [2005] and thusQUAD(P,ω)
with P = I2ω , allowing for q to be any value greater than or
equal to zero (DeLellis et al. [2011]).

Here, we consider uncertainties and investigate their impact
on ε. The uncertainties under consideration are distributed
randomly between 0 and−0.5. The Van der Pol oscillator loses
its periodic orbit for larger uncertainties. In this example, we
have

∥
∥diag

(
∆i −∆

)∥
∥ = 0.2089 andσ = 0.4769. According

to Theorem 2,k has to be chosen such that 0.4769− 6k <

0, which is true fork > 0.0795. Therefore, we would have
ε = 0.2089

√
6

−0.4769+6k. This setting is simulated in MATLAB using
ode45 at three different gains 0.1, 1, and 10. The respective
supremum norms ofs are found experimentally (thus solving
the problem first, before knowing the bounds). The solutions
for xi1 andxi2 are plotted for alli at the different coupling gains
in Figure 2 together with the errors‖e‖ and their upper bounds
given through Theorem 2.

The plots show, that the errors hold the previously established
bounds well. Also, it turns out, that the bounds become quite
small for comparatively small gains. The solutions agree with
our interpretations as for the smaller gains, the solutionsremain
close to each other and then approach each other with arbitrary
precision as the gain is increased.

5. CONCLUSION

We have presented a synchronization problem for homoge-
neous nonlinear systems, that each are bounded andQUAD.
These systems were subject to linear additive uncertainties
and equipped with diffusive couplings of adjustable strength.
We have referred to some literature stating that such networks
would synchronize when assuming zero uncertainties. Conse-
quently, we have derived conditions for the uncertain network
to remain bounded, arguing with the boundedness conditions
for the single nominal systems. Using this, we could derive
sufficient conditions for the synchronization error to remain
bounded, and, investigating the latter further, we analyzed first
the influence of our gain on this bound, yielding arbitrarily
small bounds for sufficiently large gains (and thus practical syn-
chronization), and second the influence of our uncertainties on
this bound, yielding bounds for a whole class of uncertainties
(and thus robust synchronization).We have validated our results
with an exemplary setup composed of perturbed Van der Pol
oscillators.
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Fig. 2. Solutions for statesx and errorse: The solutions and
errors are plotted at three different gainsk = 0.1,1,10, as
indexed in the respective plot. The upper boundsε ′ for ‖e‖
are plotted red (——). As expected, the errors satisfy the
computed bounds and decrease with increasingk.
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