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Abstract— We study the problem of practical cluster synchro-
nization in networks of heterogeneous dynamical systems. The
considered framework involves groups of identical dynamical
systems, interacting with each other through linear couplings.
The control objective studied in this paper is to achieve
synchronization up to a possibly small error of all identical
systems. Based on the two assumptions that all systems satisfy
the QUAD condition and that the global coupling structure is
acyclic, a constructive procedure for a coupling design ensuring
practical cluster synchronization is proposed. For establishing
the desired result, first, the synchronization of identicalsystems
under external disturbances is studied. The main contribution
is the extension of this result to the complete heterogeneous
network. The theoretical results are illustrated and tested
numerically on an exemplary network composed of several Van
der Pol oscillators and Chua’s circuits.

I. INTRODUCTION

Many real world networks are composed of systems with
different dynamical behavior. The nature of these networks
is heterogeneous. In general, synchronization, which is con-
vergence of all solutions to a common trajectory, is hard
to achieve in such heterogeneous settings. In fact, diffusive
couplings often not suffice to synchronize such systems.
Instead, local controllers such as pinning controllers are
employed to force the systems to synchronize. However,
one can observe approximate synchronization in physical
systems when solely using diffusive couplings. Therefore,
we will herein analyze the dynamics of a diffusively coupled
network of heterogeneous systems composed of networks of
identical subsystems. In this setting, we will derive sufficient
conditions for the network to synchronize approximately. In
particular, for an arbitrary upper bound for the synchroniza-
tion error, we will be able to derive a gain such that the
synchronization error can be overestimated by this bound,
thus motivating practical synchronizability.

Related Work.The phenomenon of synchronization has
been widely studied in the engineering and physics com-
munity and can be traced back to Mirollo and Strogatz
[1] or Pecora and Caroll [2]. Over the years, several fields
of research have emerged from this. Among them, there
is the synchronization of heterogeneous (nonidentical) sys-
tems, cluster synchronization, and pinning control. Naturally,
synchronization of heterogeneous systems is more complex
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than in homogeneous systems and both, cluster synchro-
nization and pinning control can be studied on either of
them. Cluster synchronization refers to the emergence of
different synchronized solutions ofclusters of systems. It
has been studied in heterogeneous second-order nonlinear
systems under diffusive coupling [3]–[5], in heterogeneous
linear and homogeneous nonlinear systems under diffusive
coupling [6], in heterogeneous nonlinear systems with two
clusters assuming identical inputs for every cluster [7],
in homogeneous networks under pinning control [8], and
in nonlinear heterogeneous systems under pinning control
in community networks [9]. Heterogeneous synchronization
without clustering has been applied in community networks
under adaptive coupling strength [10], using pinning control
[11], and using the internal-model principle [12]–[15]. Ro-
bust synchronization has been considered using techniques
similar to the ones proposed herein [16].

An important concept in synchronization studies is the
QUADcondition. In fact, there have been significant contri-
butions showing that theQUAD condition is a key property
facilitating synchronization [17]–[20]. TheQUAD condition
becomes particularly relevant as it opens a way for syn-
chronization proofs based on Lyapunov theory. We build in
this paper upon the previous results onQUAD systems, and
exploit the Lyapunov structure of the synchronization proofs.
Contributions.We propose a solution to the problem of prac-
tical cluster synchronization in networks composed of dif-
ferent classes of dynamical systems. We consider a network
structure, where each node represents a dynamical system.
Nodes governed by the same differential equations are said
to be a class of systems. We consider a fixed interaction
structure between the nodes and show how under certain as-
sumptions, an adjustment of coupling gains between identical
systems suffices to achieve cluster synchronization up to a
small error. As a first contribution, we show that a network
of identical systems satisfying theQUAD condition can be
practically synchronized by a linear coupling, even in the
presence of external disturbances. We show therefore that the
local coupling gains influence the ultimate synchronization
error in a reciprocal manner. As a main contribution, we
show how this result can be used to achieve practical cluster
synchronization in networks with acyclic topology. We prove
that, given a certain set of allowed bounds for the synchro-
nization errors, one can always choose the local coupling
gains such that the synchronization errors are all ultimately
bounded by the desired bounds. The proof of this result is
constructive and provides an explicit algorithmic procedure
for the design of the coupling gains. Finally, we present an



exemplary network consisting of Van der Pol oscillators and
Chua’s circuits supporting the theoretical findings.
Organization of the Paper.The paper is structured as follows.
The problem setup considered in the paper is introduced in
Section II. In Section II.A the considered class of dynamic
systems is introduced. In Section II.B, the considered cou-
pling structure between these systems is discussed. Section
III provides the first theoretical results, giving a bound on
the synchronization errors. First, in Section III.A the stability
of the errors for bounded inputs is proven, then, in Section
III.B, a result is presented which shows that arbitrary small
error bounds can be achieved by choosing sufficiently large
gains. The main theorem is contained in Section IV, where
the prior results are extended to the complete heterogeneous
network, providing a constructive result for practical cluster
synchronization. The paper concludes with a numerical ex-
ample in Section V and final remarks in Section VII.
Notation. In the remainder of this paper, variables are for-
matted italic, spaces are double struck and operators are
written upright, whereas calligraphic letters represent graphs.
In particular,R is the field of real numbers. If the negative
or positive numbers should explicitly be excluded,R

+ and
R
− is used, respectively. The inclusion or exclusion of{0}

will explicitly be noted in every case through∪{0} or \{0},
respectively. Then-times Cartesian product on the real field
R×·· ·×R (the space ofn-tuples) is abbreviated byRn and
R

n×m are the matrices composed ofm n-tuples; spec is the
spectrum, max the maximum, min the minimum, sup the
supremum and inf the infimum;⊤ denotes the transpose and
‖·‖ is the Euclidean norm or the induced Euclidean norm,
respectively. A[0,∞ ) → [0,∞ ) function is said to be class
K , if it is zero at zero, strictly increasing, and continuous,
and a[0,∞ )2 → [0,∞ ) function is classKL , if it is class
K in the first argument and decreasing to zero in the second
argument.

II. PROBLEM STATEMENT

We consider networks of heterogeneous nonlinear dynam-
ical systems influencing each other in a linear manner. The
control objective is to achieve practical synchronization, i.e.,
synchronization up to a pre-specified, possibly small error,
of all systems governed by the same dynamics.

A. Systems

Networks consisting ofN dynamical systems are consid-
ered, where each system is described by one ofM (M ≤ N)
different nonlinear differential equations. For each class of
dynamicsi ∈ {1, . . . ,M}, there areNi systems governed by
this dynamics. We allow in particularNi = 1, and note that
∑M

i=1Ni = N. The state vector of each dynamical systemΣi j ,
j ∈ {1, . . . ,Ni}, i ∈ {1, . . . ,M} is denoted byxi j ∈ R

ni and
evolves according to the dynamics

ẋi j = fi (xi j )+ui j . (1)

Here ui j ∈ R
ni and is the input of thei j th system, through

which the coupling with neighboring systems will be real-
ized. The main assumption we impose on the systems is that
all nonlinear functionsfi are QUAD .

Definition 1 ([19]): A vector field f (x) is said to be
QUAD (∆,ω), if there exists someω ∈ R

+ \ {0}, ∆ = [∆i j ],
∆i j = 0 for all i 6= j, such that the quadratic inequality
(xa− xb)

⊤ ( f (xa)− f (xb)) − (xa− xb)
⊤ ∆(xa− xb) ≤

−ω (xa− xb)
⊤ (xa− xb) holds for allxa,xb.

ConsideringQUAD systems is clearly a restrictions. How-
ever, QUAD systems have been proven to be of significant
importance in the synchronization literature [17]–[20]. This
justifies to focus on systems having this desirable property.
The average of the states of all systems within the same class
i ∈ {1, . . . ,M} is in the following denoted by

si (t) =
1
Ni

Nj

∑
j=1

xi j (t) .

The deviation from this trajectory will be called the syn-
chronization errorei j (t) = xi j (t)−si (t). Please note that this
definition of the synchronization error implies∑Ni

j=1ei j = 0,
where 0 denotes the all zeros vector.

Now, some notions regarding the collection of systems
are required. Theclass of systems equipped with identical
differential equations is denoted asΣi =

⋃Ni
j=1 Σi j and the

collection of all classes isΣ =
⋃M

i=1 Σi . If one classk should
explicitly be excluded, the terminologyΣ\k =

⋃M
j 6=k Σi = Σ\

Σk is used. If the classes with a higher index thank are
considered,Σ>k abbreviatesΣ>k =

⋃M
j=k+1 Σ j .

Definition 2: A collection of systems classesΣ is said to
be homogeneous ifM = 1, and heterogeneous ifM > 1.
In the same way, the states of systems, system classes, and
collections of system classes can be defined. The vectorxi

denotes the stacked vector of allxi j , i.e., x⊤i =
[

x⊤i1 · · ·x
⊤
iNi

]

,

and x the stacked vector of allxi , i.e, x⊤ =
[

x⊤1 · · ·x⊤M
]

.
Furthermore,x\k explicitly excludes the states fromxk, and
x>k are the states of classes with a higher index thank.
We take the analog notation for inputsui , u, errors ei ,
e, and functionsf⊤ (x) =

[

f⊤i (xi1) · · · f⊤M (xMNM )
]

. Then the
dynamical representation of all system is given in a compact
form by ẋ= f (x)+u.

B. Couplings

In general,global couplings are considered in this paper.
Global couplings are couplings between systems in different
classes. However, for clarity of presentation, the description
of these couplings is approached by first introducinglocal
couplings, which are couplings among members of one class.

Let the systemsΣi be placed at the vertices of a directed,
weighted graphGi , represented through the matrixWi ∈
R

Ni×Ni containing its edge weights. The graphGi will in
the following also be called alocal graph. An elementWi,mn

of this weight matrix is a scalar that describes whether or
not the output of systemn is used as input for systemm
and how much the function is scaled in between; if there is
no edge fromn to m, thenWi,mn= 0. In addition, let every
system admit an external input ˜ui j , which will later describe
the influence of systems in other classesΣ\i . Now, the input
to one system can be written asui j = ũi j +∑Ni

n=1Wi, jnxin.
Taking into account all systems on the subgraphGi , their
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Fig. 1. Structure of the underlying graphs: a) A class islocally connected through a graphGi b) The graphsGi are subgraphs of aglobal graphG that
also contains the couplings between different classes c) The topology ofG is represented by a graphT that is assumed to be acyclic.

couplings and external influences can be written in vector
form asui = ũi +(Wi ⊗ In)xi .

There shall be little restriction on the structure ofGi

(particularly including admission of self-loops), but certain
assumptions on the structure of the coupling matricesWi

are required. LetWn denote the setWn = {A∈R
n×n|A1n =

0, rank(A) = n−1,A= A⊤,max(spec(A)\ {0})< 0}, where
1n = [1· · ·1]⊤ ∈ R

n, andW =
⋃∞

n=2W
n. Note thatWi ∈ W

means thatWi is the negative Laplacian of some connected,
balanced graph [21] and we denote

max(spec(Wi)\ {0}) = λi , (2)

The conceptual idea we exploit to achieve synchronization
of all systems withinΣi is as follows. We introduce one
common positive gaingi ∈ R

+ \ {0} which is used by all
systemsΣi to amplify the influence from other systems in
the same class. That is, the coupling matrixWi is multiplied
with the gain gi . For convenience, we denote the novel,
scaled coupling matrix asWii = Wigi . The control input to
the systems inΣi is now given by

ui = ũi +(Wii ⊗ In)xi . (3)

We are now ready to consider the connection between
systems in different classes. On the larger scale, a second
graphG is introduced. This graph has the local graphsGi

as proper subgraphs. Additionally, edges connecting systems
from different classes are introduced. We callG the global
graph, and describe the adjacency relation between the nodes
by the matrixW ∈R∑M

i=1Ni×∑M
i=1 Ni . In fact, the matrixW can

be written as a block matrix with matrix entriesWi j ∈R
Ni×Nj

that describe whether or not the outputs of classΣ j are used
as inputs for classΣi and how much these functions are
scaled in between. Naturally, the diagonal matrices ofW are
the mappings from the outputs ofΣi to itself, given byWii ,
and the external inputs ˜ui are described by the off-diagonal
elements ofW throughũi = ∑M

j 6=i(Wi j ⊗ In)x j . It follows that
an elementWi j ,mn scales the output of systemΣ jn as input
of systemΣim. The dimensions of all couplings result from
above considerations, asW ∈ R∑M

i=1Ni×∑M
i=1Ni , Wi ∈ R

Ni×Ni ,
Wi j ∈ R

Ni×Nj , and Wi,mn,Wi j ,mn ∈ R. This large-scale point

of view leads to the complete definition of the input signals
to one system as

ui j =
N1

∑
n=1

Wi1, jnx1n+ · · ·+
NM

∑
n=1

WiM , jnxMn =
M

∑
m=1

Ni

∑
n=1

Wim, jnxmn.

(4)
As a consequence, the vectorui is given byui = ∑M

j=1(Wi j ⊗
In)x j , and the vectoru simplifies tou= (W⊗ In)x such that
the dynamics can be written as

ẋ= f (x)+ (W⊗ In)x. (5)

For the purpose of this paper, we need to impose restric-
tions on the interconnections between systems in different
classes. In a first step, we simplify the overall topology
of G to a novel abstract (unweighted, directed) graphT .
The adjacency matrix ofT is denotedT ∈ R

M×M and its
elements are defined as

Ti j =

{

0 if Wi j ,mn= 0 ∀ m= 1, · · · ,Ni ,n= 1, · · · ,Nj ,

1 else.

A zero elementTi j indicates that the matrixWi j is the all
zeros matrix. Thus,T simplifies the microscopic view on
scalar coupling weights to a macroscopic view on zeros
(there is no coupling between classesi and j) and ones
(there is some coupling between classesi and j). The main
assumption we impose on the global coupling structure is
that the graphT is acyclic. A directed graph is said to be
acyclic if it has no path starting and ending at one vertex.

Definition 3 ([22]): A directed graphT is said to be
acyclic, if it contains no closed paths.
A main result, important for the purpose of this paper, is the
following. Every acyclic directed graph has a permutation
such that its adjacency matrix becomes triangular [22]. A
graph with triangular adjacency matrix is called a topologi-
cally ordered acyclic directed graph.

Definition 4 ([22]): A directed graphT with adjacency
matrix T = [Ti j ] is a topologically ordered acyclic directed
graph, if Ti j = 0 ∀i > j.
Tere are powerful algorithms to find such permutations [22].
Thus, we assume in the following thatTi j = 0 ∀i > j. In



other words, a necessary condition forT to be topologically
ordered is that, if there is some output from a member of
classΣ j used as input for some member of classΣi , then
there shall be no connection vice versa.

An exemplary setting, involving the different notions of
graphs considered here, is depicted in Fig. 1. In the depicted
setting, the local graphsG1, G2, and G3 are shown in Fig.
1 a). Then, in Fig. 1 b), the edges between systems from
different classes are added, leading to the global graphG .
Notably, there is no path starting in a classi and leaving
class i that can end in classi for all i = 1,2,3. Thus, the
topologyT of G is shown in c) and turns out to be acylic.
It is also topologically ordered asT21 = T32 = T31 = 1 and
T12 = T23 = T13 = 0.

III. PRACTICAL SYNCHRONIZATION

The main objective of this paper is to establish a practical
cluster synchronization of the complete network. That is, we
want to ensure that all systems within one class synchronize
up to an error that can be chosen a-priori. To achieve this
objective, we focus first on the synchronization problem
for systems within one class and consider the influence of
external input signals. In fact, we show that if the coupling
gains are chosen sufficiently large, synchronization with an
arbitrarily small error is achieved.

A. Input to Error Stability

In the first place, we assume that ˜ui is only known to be
bounded but is unknown otherwise. The main finding of this
section is that for sufficiently largegi, a bounded ˜ui results
in a boundedei . Furthermore, the bound on ˜ui and the gain
gi determine the ultimate bound onei .

Definition 5: A class of systemsΣi is said to be input to
error stable, if the errorei is bounded by

‖ei (t)‖ ≤ βi (‖ei (0)‖ , t)+ εi sup0≤τ≤t ‖ũi (τ)‖ ,

whereβi is some classKL function andεi a finite gain.
We are now ready to introduce the main result of this section.

Theorem 1:Consider a classΣi of systems (1) with cou-
pling (3), assumeWi ∈W, and let (2) hold. Furthermore, let
fi be QUAD (∆i ,ωi) with someci satisfying∆i −ω Ini ≤ ci Ini .
Then, for anygi chosen such thatci +giλi < 0, Σi is input
to error stable withεi =

1
−(ci+giλi)

.
Proof: Consider the Lyapunov function candidateVi =

1
2 ∑Ni

j=1e⊤i j ei j . The directional derivative takes the forṁVi =

∑Ni
j=1e⊤i j (ẋi j − ṡi). The sum∑Ni

j=1e⊤i j ṡi is equal to zero since

∑Ni
j=1ei j = 0. Similarly,∑Ni

j=1e⊤i j fi (si) = 0. Hence

V̇i =
Ni

∑
j=1

e⊤i j

(

fi (xi j )− fi (si)+
M

∑
m=1

Ni

∑
n=1

Wim, jnxmn

)

.

Now, ∑M
m=1 ∑Ni

n=1Wim, jnxmn can be partitioned into ˜ui j and
∑Ni

n=1giWi, jnxin. We can now simply subtract∑Ni
n=1giWi, jnsi =

0, which is zero due toWii ∈W, to arrive at

V̇i =
Ni

∑
j=1

e⊤i j

(

fi (xi j )− fi (si)+
Ni

∑
n=1

giWi, jnein + ũi j

)

.

The next step is to use theQUAD condition, which provides,
together with the upper boundci [19], the bound

V̇i ≤
Ni

∑
j=1

e⊤i j

(

ciei j +
Ni

∑
n=1

giWi, jnein + ũi j

)

.

This bound can be rewritten in vector form asV̇i ≤ cie⊤i ei +
e⊤i (Wii ⊗ In)ei + e⊤i ũi . From the definition of the synchro-
nization error,∑Ni

j=1ei j = 0. By our assumption on the local
coupling structure, i.e.,Wii ∈W, we can directly obtain the
bounde⊤i (Wii ⊗ In)ei ≤ giλie⊤i ei , whereλi is as defined in (2).
Further, usinge⊤i ũi ≤ ‖ei‖‖ui‖, the bound on the directional
derivative can be refined as

V̇i ≤(ci +giλi)e⊤i ei + ‖ei‖‖ũi‖ (6)

=(ci +giλi)(1−θ )e⊤i ei +(ci +giλi)θe⊤i ei + ‖ei‖‖ũi‖

for some 0< θ < 1. Now, the gaingi can always be chosen
large enough such thatci +giλi < 0. The bound (6) can now
be equivalently written as

V̇i ≤ (ci +giλi)(1−θ )e⊤i ei ∀ ‖ei‖ ≥
1

−θ (ci +giλi)
‖ui‖ .

In fact, this implies thaṫVi ≤ 0 if ‖ei‖ ≥
1

−θ(ci+giλi)
‖ui‖. A

standard argumentation, as e.g. used in the proof of Theorem
4.18 in [23], can now be applied to show thatΣi is input to
error stable withεi =

1
−(ci+giλi)

.
The key aspects of this result are, first, that the coupling
gains gi can always be chosen sufficiently large such that
synchronization with a bounded error is achieved, and,
second, the ultimate synchronization error depends reciprocal
on the gains. Thus, the local coupling gains can be used
to reduce the influence of external perturbations on the
synchronization.

B. Practical Synchronizability

For the next step, we assume that the bound on the signal
ũi is known as sup0≤τ≤t ‖ũi (τ)‖= zi .

Definition 6: A class of systemsΣi is said to be practically
synchronizable, if, for any choice ofε ′i > 0, there exists a
coupling gaingi , such that the errorei is bounded by

‖ei (t)‖ ≤ βi (‖ei (0)‖ , t)+ ε ′i ,

whereβi is some classKL function.
Practical synchronizability can now be readily established
for the considered class of systems.

Theorem 2:Consider a classΣi of systems (1) with cou-
pling (3), assumeWi ∈W, and let (2) hold. Furthermore, let
fi be QUAD (∆i ,ωi) with someci satisfying∆i −ω Ini ≤ ci Ini

and letzi = sup0≤τ≤t ‖ũi (τ)‖ be finite and known. ThenΣi

is practically synchronizable.
Proof: Using Theorem 1 and the boundzi for ‖ũi (τ)‖,

one can directly conclude that

‖ei (t)‖ ≤ βi (‖ei (0)‖ , t)+
1

−(ci +giλi)
zi . (7)

Now, given any ε ′i , the gain gi can always be chosen
sufficiently large such that

gi ≥
zi + ε ′i ci

−ε ′i λi
. (8)



Substituting (8) in (7),‖ei (t)‖ ≤ βi (‖ei (0)‖ , t)+ ε ′i follows,
which corresponds to Definition 6.
Note that the boundε ′i has been chosen a-priori and can,
in particular, be chosen arbitrarily small. Thus, in the limit,
i.e., asgi approaches infinity, exact synchronization can be
achieved. However, for finite gains a synchronization error
will always remain.

IV. PRACTICAL CLUSTER SYNCHRONIZATION

So far, only local couplings have been considered, as
depicted in Fig. 1 a). Now, the discussion is extended
to include couplings between different system classes, as
illustrated in Fig. 1 b). Thus, coupling (4) is now considered
instead of (3) and ˜ui is no longer anonymous. However,
in the general setup involving heterogeneous systems, exact
synchronization cannot be achieved. Thus, an alternative no-
tion of synchronization is required. The concept we employ
here is cluster synchronization. That is, we want all systems
within one system class to synchronize. Unfortunately, due
to the persistent influence from systems in other classes, an
exact cluster synchronization cannot be achieved. Therefore,
we refine the discussion to the concept of practical cluster
synchronization, where systems within one class synchronize
up to a pre-specified error. As a conceptual idea, we aim to
design the local coupling gains, used by all systems within
one class, to achieve such a practical cluster synchronization.

Definition 7: A collection Σ of classesΣi is said to
be practically cluster synchronizable, if, for any choice of
bounds{ε ′1, · · ·ε ′M}, there exists a set of gains{g1, · · ·gM},
such that

‖ei (t)‖ ≤ βi (‖ei (0)‖ , t)+ ε ′i

holds∀ i = 1, · · · ,M, whereβi is some classKL function.
The line of argumentation we employ here can be sketched

as follows. The result of Theorem 1 shows thatgi directly
influences the ultimate bound onei . Thus, knowingzi gives
rise to a situation where the ultimate bound onei can be made
arbitrarily small with sufficiently high gains. Now, consid-
ering the global coupling structure it follows directly that
the “external” input ˜ui is fully defined by the states of other
systems, i.e.,zi = sup0≤τ≤t ‖ũi (τ)‖=H

(

sup0≤τ≤t

∥

∥x\i (τ)
∥

∥

)

,
whereH is some (linear) function ofW. By exploiting this
observation, we can establish practical cluster synchroniz-
ability under the assumption that the graphT is acyclic.

Theorem 3:Consider a collectionΣ of classesΣi of
systems (1) with coupling (4). Assume thatT is acyclic,
∀i = 1, · · · ,M: Wi ∈W and (2) holds. Furthermore, letfi be
QUAD(∆i ,ωi) with someci satisfying∆i −ω Ini ≤ ci Ini . Then
Σ is practically cluster synchronizable.

Proof: The proof follows from induction. First, recall
that there exists a permutation forT, such thatT becomes
a topologically ordered acyclic directed graph [22]. Hence
Ti j = 0 ∀ i > j. Thus there is at least one classΣM, for that
ũM = 0 in (3) holds. This class will be the basis for the
following induction.
Basis (i= M): At the basis, due toT being topologically
ordered,TM j = 0 for j 6= M. Thus, WM j = 0 for j 6= M

and hencezM = 0. Then, limt→∞ eM = 0 for gM satisfying
gM ≥ cM

−λM
, which is (8) withzM = 0.

Hypothesis (1< i <M): Σi is practically synchronizable with
‖ei (t)‖ ≤ βi (‖ei (0)‖ , t)+ ε ′i .
Step (i− 1): Recalling the form of (5) and the topo-
logical ordering of T , then Σi−1 only receives input
from Σ>i and zi−1 = Hi−1sup0≤τ≤t ‖x>i−1‖, whereHi−1 =
[Wii ⊗ In · · ·WiM ⊗ In]. Following the hypothesis,‖ei (t)‖ goes
to ε ′i . Thus, using the triangle inequality,‖x>i−1‖ can be es-

timated via‖x>i−1‖≤ ‖s>i−1‖+
√

∑M
j=i ε ′2

j . In doing so,zi−1

is known andgi−1 can be set such thatgi−1 ≥
zi−1+ε ′i−1ci−1

−ε ′i−1λi−1
.

This is just Theorem 2, which makesΣi−1 satisfy‖ei−1 (t)‖≤
βi−1(ei−1(0) , t)+ ε ′i−1 and hence concludes the proof.

We want to point out again that the main ingredients
for this result are theQUAD condition, the sufficient local
coupling, and the acyclic structure of the global coupling
graph. Exploiting these properties, the recursive procedure
presented above provides aconstructiveway to design the
local coupling gains for practical cluster synchronization.

V. NUMERICAL EXAMPLE

The theoretical results presented above are now illustrated
on an exemplary setup. In fact, we show that important
dynamical systems meet our assumptions. Additionally, we
also illustrate here, how we can extend our framework
to systems of different dimensions. We consider a setup
involving two system classesM = 2. ClassΣ1 is governed by
N1 = 7 Chua’s circuits, and classΣ2 is governed byN2 = 5
Van der Pol oscillators. The dynamic equations for Chua’s
circuit are





ẋ1i,1

ẋ1i,2

ẋ1i,3



=





a1(−x1i,2−a5(x1i,1))
x1i,1− x1i,2+ x1i,3

a4x1i,2



 ,

where

a5(x1i,1) = a2x1i,1+
1
2
(a3−a2) (|x1i,1+1|− |x1i,1−1|) .

The Van der Pol oscillator is described by
[

ẋ2i,1

ẋ2i,2

]

=

[

b1x2i,2−
b2
3 x3

2i,1−b3x2i,1

−b1x2i,1

]

.

The parameters are set toa1 = 0.59/0.12, a2 = −0.07,
a3 = 1.5 a4 = 0.59/0.162,b1 = 1, b2 = 5, b3 = 5. In addition,
the systems are equipped with input mapsI3, [I2 0] and
output mapsI3, [I2 0]⊤, respectively, in order to match the
dimensions. The systems are now coupled byW1 = 1⊤7 ⊗
17−7I7, W2 = 1⊤5 ⊗15−5I5. Note that these local couplings
directly satisfy the coupling conditions and in particular(2).
Notably,W1, W2 ∈W, λ1 =−7, andλ2 =−5. The coupling
between different classes is chosen asW21 =rand(7,5),
andW12 = 0, which hence makesT an acyclic graph with
T12 = 0 andT21 = 1. Both, Chua’s circuit and the Van der
Pol oscillator, have been proven to beQUAD , i.e., the first
was shown explicitly, see [17], and the latter implicitly via
contraction, see [24]. We have herec1 = 0. Using arbitrary
initial values, the above setting is solved in MATLAB using
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Fig. 2. Error norms for classΣ1 plotted versus time induced by the respective gainsg1 = 1 (left) andg1 = 2 (right). For the higher gain, the errors are
just the half of the errors for the low gain, asg1 influencesε1 linearly for c1 = 0.

ode45 with two different gainsg1 = 1 andg1 = 2. From our
results, the error‖e1‖ with the high gain should be less than
half the error with the low gain. The plots resulting from
our simulation are depicted in Figure 2. One can observe,
that the maximal error for the higher gain is just half the
error of the lower gain. The simulations clearly support our
theoretical findings.

VI. CONCLUSIONS AND FUTURE WORK

We studied practical cluster synchronization for coupled
nonlinear systems. Our setup involved several classes of
identical systems and we showed, how practical cluster
synchronization can be achieved by a suitable choice of
local coupling gains. The presented results build upon three
main assumptions: (i) theQUAD condition for the dynamical
systems, (ii) appropriate couplings between nodes in the
same class, and (iii) an acyclic interconnection structure
between nodes in different classes. Based on these results,we
proposed a constructive recursive procedure to select local
coupling gains, such that the synchronization errors of a
system class are ultimately bounded by an a-priori chosen
bound. The theoretical results have been validated on an
exemplary network composed of Van der Pol oscillators and
Chua’s circuits.

The main challenge for future work is to overcome the
restrictive assumption that the global interaction structures
follow an acyclic structure.
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