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Abstract— We study the problem of practical cluster synchro- than in homogeneous systems and both, cluster synchro-
nization in networks of heterogeneous dynamical systems.hE  njzation and pinning control can be studied on either of
considered framework involves groups of identical dynamial them. Cluster synchronization refers to the emergence of
systems, interacting with each other through linear couplings. dif t hronized soluti aflust f t It
The control objective studied in this paper is to achieve ifrerent sync _rom;e solulions a@iusters ot systems. )
synchronization up to a possibly small error of all identicd ~has been studied in heterogeneous second-order nonlinear
systems. Based on the two assumptions that all systems shtis systems under diffusive coupling [3]-[5], in heterogergou
the QUAD condition and that the global coupling structure is  |inear and homogeneous nonlinear systems under diffusive
acyclic, a constructive procedure for a coupling design ensing coupling [6], in heterogeneous nonlinear systems with two

practical cluster synchronization is proposed. For estab$hing lust . identical i ts f lust 7
the desired result, first, the synchronization of identicalsystems clusters assuming identical inputs for every cluster [7],

under external disturbances is studied. The main contribuion N homogeneous networks under pinning control [8], and
is the extension of this result to the complete heterogenesu in nonlinear heterogeneous systems under pinning control

networ_k. The theoretical results are illustrated and testel jn community networks [9]. Heterogeneous synchronization
numerically on an exemplary network composed of several Van without clustering has been applied in community networks
der Pol oscillators and Chua’s circuits. . . . .
under adaptive coupling strength [10], using pinning caintr
. INTRODUCTION [11], and using the internal-model principle [12]-[15]. Ro

Many real world networks are composed of systems witRust synchronization has been considered using techniques
different dynamical behavior. The nature of these network&milar to the ones proposed herein [16].
is heterogeneousn general, synchronization, which is con- An important concept in synchronization studies is the
vergence of all solutions to a common trajectory, is har@UADcondition. In fact, there have been significant contri-
to achieve in such heterogeneous settings. In fact, difusibutions showing that theuaD condition is a key property
couplings often not suffice to synchronize such systemacilitating synchronization [17]-[20]. TheuAD condition
Instead, local controllers such as pinning controllers arf@ecomes particularly relevant as it opens a way for syn-
employed to force the systems to synchronize. Howevefhronization proofs based on Lyapunov theory. We build in
one can observe approximate synchronization in physicHliS Paper upon the previous results QuAD systems, and
systems when solely using diffusive couplings. Therefor&Xploit the Lyapunov structure of the synchronization fsoo
we will herein analyze the dynamics of a diffusively coupled=0ntributions We propose a solution to the problem of prac-
network of heterogeneous systems composed of networks!ial cluster synchronization in networks composed of dif-
identical subsystems. In this setting, we will derive sifit ferent classes of dynamical systems. We consider a network
conditions for the network to synchronize approximatety. | Structure, where each node represents a dynamical system.
particular, for an arbitrary upper bound for the synchraniz Nodes governed by the same differential equations are said
tion error, we will be able to derive a gain such that thd® be a class of systems. We consider a fixed interaction
synchronization error can be overestimated by this boungtructure between the nodes and show how under certain as-
thus motivating practical synchronizability. sumptions, an adjustment of coupling gains between idantic

Related Work The phenomenon of synchronization hasystems suffices to achieve cluster synchronization up to a
been widely studied in the engineering and physics congmall error. As a first contribution, we show that a network
munity and can be traced back to Mirollo and Strogat®f identical systems satisfying theuAD condition can be
[1] or Pecora and Caroll [2]. Over the years, several fieldgractically synchronized by a linear coupling, even in the
of research have emerged from this. Among them, theRfesence of external disturbances. We show thereforetthat t
is the synchronization of heterogeneous (nonidenticad) sylocal coupling gains influence the ultimate synchronizatio
tems, cluster synchronization, and pinning control. Naityr ~ €ror in a reciprocal manner. As a main contribution, we

synchronization in networks with acyclic topology. We peov
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exemplary network consisting of Van der Pol oscillators and Definition 1 ([19]): A vector field f (x) is said to be

Chua’s circuits supporting the theoretical findings. QUAD (A, w), if there exists someo € R\ {0}, A = [Ajj],
Organization of the Papethe paper is structured as follows.Ajj = 0 for all i # j, such that the quadratic inequality
The problem setup considered in the paper is introduced (&, — xy) " (fﬁxa) —f() — (a—%) Aa—X) <

Section II. In Section II.A the considered class of dynamic- (x, — Xp) ' (Xa — Xp) holds for all Xa, Xp.

systems is introduced. In Section II.B, the considered co@onsideringQUAD systems is clearly a restrictions. How-
pling structure between these systems is discussed. Bectisver, QUAD systems have been proven to be of significant
Il provides the first theoretical results, giving a bound ormportance in the synchronization literature [17]-[20hi§
the synchronization errors. First, in Section Ill.A thetslidy  justifies to focus on systems having this desirable property
of the errors for bounded inputs is proven, then, in SectioThe average of the states of all systems within the same class
l11.B, a result is presented which shows that arbitrary $mal ¢ {1,...,M} is in the following denoted by

error bounds can be achieved by choosing sufficiently large N

gains. The main theorem is contained in Section IV, where s(t) = 1 Z Xij (t).

the prior results are extended to the complete heterogeneou N; =1 .

network, providing a constructive result for practical stkr The deviation from this trajectory will be called the syn-

synchronization. The paper concludes with a numerical ex; ~ ~.~ " A g
ample in Section V and final remarks in Section VII. chronization erroe; (t) = x; (t) s (t). Please note that this

Notation. In the remainder of this paper, variables are forgef'mt'on of the synchronization error 'mp“%'\lzlal =0,

matted italic, spaces are double struck and operators a/ygere 0 denotes t.he all ZEros vector. .
Now, some notions regarding the collection of systems

written upright, whereas calligraphic letters represeapps. . ; L :
In particSIang,R is the field ofgreart)l numbers. prthe n(-:ngativea_re requ_lred. Thcg:lass_of systems equpsid with identical
or positive numbers should explicitly be exclud@; and diterential equations is denofvled as = UL, % and the
R~ is used, respectively. The inclusion or exclusion{6} ~ Collection of all classes i& = JiZ; %i. If one clﬁﬂssk should
will explicitly be noted in every case through{0} or \ {0}, ~ €xXplicitly be excluded, the terminology = UjZ i = 2\
respectively. Ther-times Cartesian product on the real field>k IS used. If the classes with aMh|gher index tharare

R x ---x R (the space ofr-tuples) is abbreviated bg" and ~consideredy.y abbreviate® .k = Ujx:12j.

R ™ are the matrices composed 1of n-tuples; spec is the Definition 2: A collection of systems classe?s_ls said to
spectrum, max the maximum, min the minimum, sup th@¢ homogeneous ¥ =1, and heterogeneousM > 1.
supremum and inf the infimunT, denotes the transpose and/n the same way, the states of systems, system classes, and
||| is the Euclidean norm or the induced Euclidean nornfollections of system classes can be defined. The vegtor
respectively. A[0,) — [0,0) function is said to be class denotes the stacked vector of &lj, i.e.,x' = [ﬂx&,}
2, it it is zero at zero, strictly increasing, and continuousand x the stacked vector of alk;, i.e, X" = [x] ---x}].
and a[0,»)? — [0,) function is class#.Z, if it is class Furthermorex, explicitly excludes the states from, and
¢ in the first argument and decreasing to zero in the second, are the states of classes with a higher index than
argument. We take the analog notation for inputs, u, errors g,

Il. PROBLEM STATEMENT e, and functionsf ' (x) = [;" (xi1) - fyj (xwny)]. Then the

We consider networks of heterogeneous nonlinear dynarﬁynamlcal representation of all system is given in a compact
: . : . . orm by x= f (x) + u.
ical systems influencing each other in a linear manner. The

control objective is to achieve practical synchronization, B. Couplings

synchronization up to a pre-specified, possibly small error |, general global couplings are considered in this paper.

of all systems governed by the same dynamics. Global couplings are couplings between systems in difteren

A. Systems classes. However, for clarity of presentation, the desorip
Networks consisting oN dynamical systems are consid-Of these couplings is approached by first introdudiogal

ered, where each system is described by onkl ¢M < N) couplings, which are couplings among mgmbers of one class.

different nonlinear differential equations. For each slag L6t the system&; be placed at the vertices of a directed,

dynamicsi € {1,...,M}, there areN; systems governed by Wﬁ'gnted graph#, represented through the matrid <

this dynamics. We allow in particuldt = 1, and note that R "™ containing its edge weights. The gragh will in

$M. N = N. The state vector of each dynamical systEm the following also be called kcal graph. An elemeritV mn
i€ {l...,N}ie{1,...,M} is denoted byxj € R and of this weight matrix is a scalar that describes whether or

evolves according to the dynamics not the output of system is used as input for system
) and how much the function is scaled in between; if there is
Xij = fi (%j) + uij. D no edge fromn to m, thenW mn = 0. In addition, let every

Hereu;j; € R" and is the input of théjth system, through system admit an external inpuf,"which will later describe
which the coupling with neighboring systems will be realthe influence of systems in other clasges Now, the input
ized. The main assumption we impose on the systems is that one system can be written ag = Gij + ZLW.,J-nXm.
all nonlinear functiond; are QUAD . Taking into account all systems on the subgraphtheir
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Fig. 1. Structure of the underlying graphs: a) A clas®oislly connected through a graghi b) The graphs4 are subgraphs of global graph% that
also contains the couplings between different classes e)tdjology of¥ is represented by a grap#f that is assumed to be acyclic.

couplings and external influences can be written in vectaf view leads to the complete definition of the input signals
form asu; = i + (W @ In)X. to one system as

There shall be little restriction on the structure @f Ny Nug MON
(particula_mrly including admission of seIf—Ioops), but tzén Uij = ZWILJ.nleL,,,Jr ZV\/lM,anMn — Z Z\Mm,jnxmn-
assumptions on the structure of the coupling matridés n=1 n=1 nM=1n=1
are required. LetV" denote the seW" = {A e R™"Al, = o " (4)
0,rank(A) =n—1,A= A", max(spedA)\ {0}) < O}, where AS a consequence, the vecteris given byu; = 337, (W ®
1h=[1- “1]T € R, and W = JZ_,W". Note thatW € W In)xj, and the vectou simplifies tou= (W ® In)x such that
means that\{ is the negative Laplacian of some connected1® dynamics can be written as
balanced graph [21] and we denote %= (X) + (W& In)x. (5)

max(speqW) \ {0}) = Ai, @ For the purpose of this paper, we need to impose restric-

The conceptual idea we exploit to achieve synchronizatidiPns on the interconnections between systems in different
of all systems withinZ; is as follows. We introduce one classes. In a first step, we simplify the overall topology
common positive gairg; € R* \ {0} which is used by all 0f ¢ to a novel abstract (unweighted, directed) graph
systemss; to amplify the influence from other systems inThe adjacency matrix of7 is denotedT € RM*M and its
the same class. That is, the coupling matkixis multiplied —elements are defined as
with the gain 0. For.convenience, we denote f[he novel, {O if Wjmn=0 ¥m=1-- N,n=1- N;
scaled coupling matrix agf =Wg;. The control input to  Tjj = ’

the systems irx; is now given by 1 else.

3) A zero elementTj; indicates that the matri}\j is the all
zeros matrix. Thus,7 simplifies the microscopic view on

We are now ready to consider the connection betweestalar coupling weights to a macroscopic view on zeros

systems in different classes. On the larger scale, a secoftidere is no coupling between classesnd j) and ones

graph¥ is introduced. This graph has the local gragfis (there is some coupling between classesd j). The main

as proper subgraphs. Additionally, edges connecting syste assumption we impose on the global coupling structure is

from different classes are introduced. We célithe global that the graph7 is acyclic A directed graph is said to be

graph, and describe the ad!'wacency relation between thesno@eyclic if it has no path starting and ending at one vertex.

by the matrixwW € RE2N*ZL:N | fact, the matri®wW can Definition 3 ([22]): A directed graph.7 is said to be

be written as a block matrix with matrix entrigg; € RN*Ni - acyclic, if it contains no closed paths.

that describe whether or not the outputs of clagsre used A main result, important for the purpose of this paper, is the

as inputs for clas€; and how much these functions arefollowing. Every acyclic directed graph has a permutation

scaled in between. Naturally, the diagonal matriceg/odre  such that its adjacency matrix becomes triangular [22]. A

the mappings from the outputs &f to itself, given byW;, graph with triangular adjacency matrix is called a topologi

and the external inputs; are described by the off-diagonal cally ordered acyclic directed graph.

elements ofV throughui = z?’;i (W ® 1h)x;. It follows that Definition 4 ([22]): A directed graphZ with adjacency

an element\j mn Scales the output of systely, as input matrix T = [Tj;] is a topologically ordered acyclic directed

of systemZjn. The dimensions of all couplings result fromgraph, if Tj =0 Vi > j.

above considerations, & < Rzi“il'\‘ixzi“il'\'i, W € RN*N - Tere are powerful algorithms to find such permutations [22].

W € RNxNj, andW mn, Wj mn € R. This large-scale point Thus, we assume in the following tha =0 Vi > j. In

Ui = Gi + (Wi ® In)x;.



other words, a necessary condition f@rto be topologically The next step is to use th®uAD condition, which provides,
ordered is that, if there is some output from a member dbgether with the upper bourg [19], the bound

classZj used as input for some member of class then N N
Vi < ZE}T <Ciaj +y giW,jnan+ﬁij) -
= n=1

there shall be no connection vice versa.

An exemplary setting, involving the different notions of
graphs considered here, is depicted in Fig. 1. In th_e deq)ictq«his bound can be rewritten in vector form As< cel e+
setting, the I_ocal_ graph®i, %, and%; are shown in Fig. (Wi ® In)e + &' 6. From the definition of the synchro-
1 ). Then, in Fig. 1 b), the edges between systems frOﬁLization error,y¥ ; & = 0. By our assumption on the local
different cIasse; are added, Iefadm_g to thg global gE_ﬁph coupling structure, i.e\; € W, we can directly obtain the
Notably, there is no path starting in a clasand leaving bounde' (Wi @ In)e < giAie &, where; is as defined in (2).

classi that can epd in cla_ss for all i =1,2,3. Thus, the_ Further, usingg' G < ||&i]|||ui ], the bound on the directional
topology .7 of ¢ is shown in c) and turns out to be acy"c'derivative can be refined as

It is also topologically ordered ak; = Tzp = Tz; =1 and i
Vi <(ci+gidi)e &+ [l |G (6)

Ti2=Toz3=Taz=0.
[1l. PRACTICAL SYNCHRONIZATION =(Gi+giA) (1-0)g &+ (ci+giA) g & + a1

The main objective of this paper is to establish a practicdr some 0< 6 < 1. Now, the gaing; can always be chosen
cluster synchronization of the complete network. That is, wlarge enough such thaf-+giAj < 0. The bound (6) can now
want to ensure that all systems within one class synchronig€ equivalently written as

up to an error that can be chosen a—priori.. To. achieve thiy; < (g +giA) (1-0)e'e VY |a| > ﬁ [lui]] -
objective, we focus first on the synchronization problem o : _ ( i +o i)
for systems within one class and consider the influence §f fact, this implies thavi < 0 if |l& || > —gr=gyy Juill. A

external input signals. In fact, we show that if the couplingtandard argumentation, as e.g. used in the proof of Theorem

gains are chosen sufficiently large, synchronization with a#-18 in [23], can now bel applied to show ttatis input to

arbitrarily small error is achieved. error stable withei =~ u

The key aspects of this result are, first, that the coupling

A. Input to Error Stability gainsg; can always be chosen sufficiently large such that
In the first place' we assume thatis only known to be synchronization with a bounded error is achieved, and,

bounded but is unknown otherwise. The main finding of thisecond, the ultimate synchronization error depends recgbr

section is that for sufficiently largg;, a boundedy;"results
in a boundedy. Furthermore, the bound al &nd the gain
0i determine the ultimate bound an

Definition 5: A class of systemg; is said to be input to
error stable, if the errog is bounded by

e @) < Bi([l&(0)],t) + & supy<r<t [T (T)]],

where 3 is some class”.# function andg; a finite gain.

We are now ready to introduce the main result of this sectio

Theorem 1:Consider a clasg; of systems (1) with cou-

pling (3), assum&\f € W, and let (2) hold. Furthermore, let

fi be QuUAD (A, ) with somec; satisfyingd — wlp, < Gily,.
Then, for anyg; chosen such that, + giA;j < 0, 3 is input
to error stable withg; = m

Proof: Consider the Lyapunov function candidate=
%z;\":lqﬁej. The directional derivative takes the foivh=
sz:leg (%] —'s_). _The Sl:l.ngizlﬁys is equal to zero since
Yjt18j =0. Similarlyy;' ; ; fi (s) = 0. Hence

. N M N
Vi = j;qT,- (fi (%) — fi(s) +n;nZlVV|mJnan> -

Now, M SN Wi jnXmn can be partitoned intai;” and
> 1 GV jnXin. We can now simply subtragt,' ; giW jns =
0, which is zero due tO\j € W, to arrive at

N; N;
Vi = ZQT<fi (xij)— fi(s)+ z giV\l‘u,ann+Uij>-
= n=1

on the gains. Thus, the local coupling gains can be used
to reduce the influence of external perturbations on the
synchronization.

B. Practical Synchronizability

For the next step, we assume that the bound on the signal
Gi is known as sup . ||Gi (T)|| = z.

Definition 6: A class of system; is said to be practically
synchronizable, if, for any choice af > 0, there exists a

Iaoupling gaing;, such that the errog is bounded by

e (Ol < Bi (e (0] ,t) + &,

where 3 is some class?.# function.
Practical synchronizability can now be readily establishe
for the considered class of systems.

Theorem 2:Consider a clasg; of systems (1) with cou-
pling (3), assum&\ € W, and let (2) hold. Furthermore, let
fi be QUAD (Ai, ) with someg; satisfyingA; — wlp, < Gily,
and letz = supg<,< [|Gi ()| be finite and known. Theg;
is practically synchronizable.

Proof: Using Theorem 1 and the bougdfor ||G; (T)||,
one can directly conclude that

1
e <B(le@l.t)+ ————=3z. 7
& Ol < B (18 O .9+ =57 o7 @)
Now, given any ¢/, the gaing; can always be chosen
sufficiently large such that
Z + &
> —.
gl - 7£|/)\|

(8)



Substituting (8) in (7))|e (t)|| < Bi (||e (0)]],t) + & follows, and hencezy = 0. Then, lim_.ev =0 for gu satisfying
which corresponds to Definition 6. H gu> j\—MM which is (8) withzy = 0.

Note that the bound] has been chosen a-priori and canHypothesis1 < i < M): Z; is practically synchronizable with
in particular, be chosen arbitrarily small. Thus, in theitim ||e (t)|| < Bi(]|l& (0)|,t)+&.

i.e., asg; approaches infinity, exact synchronization can b&tep (i—1): Recalling the form of (5) and the topo-
achieved. However, for finite gains a synchronization errdogical ordering of 7, then Xj_; only receives input

will always remain. from Z.; andz 1 = Hi_1SUR< <t [[Xsi-1l/, whereH;_; =
Wi @ In---Wiu @ I]. Following the hypothesidle (t)|| goes
IV. PRACTICAL CLUSTER SYNCHRONIZATION to €. Thus, using the triangle inequalityx-;_1 | can be es-

So far, only local couplings have been considered, aimated viax.i_a|| < [[s>i-1]|+ /3 £2. In doing soz_3
depicted in Fig. 1 a). Now, the discussion is extended el G
to Fi)nclude couglings E)etween different system classes, &sKNOWn andgi—1 can be set such thg_; > %
illustrated in Fig. 1 b). Thus, coupling (4) is now consiciere This is just Theorem 2, which mak&s.; satisfy||ei_1 (t)[| <
instead of (3) andl;”is no longer anonymous. However, Bi-1(€-1(0),t) +& ; and hence concludes the proof.m
in the general setup involving heterogeneous systemst exac'We want to point out again that the main ingredients
synchronization cannot be achieved. Thus, an alternative nfor this result are theQuAD condition, the sufficient local
tion of synchronization is required. The concept we emplogoupling, and the acyclic structure of the global coupling
here is cluster synchronization. That is, we want all systengraph. Exploiting these properties, the recursive procedu
within one system class to synchronize. Unfortunately, dueresented above providescanstructiveway to design the
to the persistent influence from systems in other classes, @§al coupling gains for practical cluster synchronizatio
exact cluster synchronization cannot be achieved. Thexefo V. NUMERICAL EXAMPLE

we refine the discussion to the concept of practical cluster he th ical | il
synchronization, where systems within one class syncheoni The theoretical results presented above are now illustrate

up to a pre-specified error. As a conceptual idea, we aim fy an _exemplary setup. In fact, we _ShOW tha_t_ important
design the local coupling gains, used by all systems Withiﬂyn"’“_mCal systems meet our assumptions. Additionally, we
one class, to achieve such a practical cluster synchrimizat &/S0 illustrate here, how we can extend our framework

Definition 7: A collection = of classess; is said to Fo systems of different dimensions. We .conS|der a setup
be practically cluster synchronizable, if, for any choide o'NVOIVing two system classdd = 2. Class, is governed by

bounds{e],--- &}, there exists a set of gairfgs, --gu}, &=/ Chuas circuits and class; is governed byN, =5
Van der Pol oscillators The dynamic equations for Chua’s

such that circuit are
le @1 < Bi(le(0)],t)+¢ .
_ _ _ X1i1 ag (—x1i2 —as (X1i,1))
holdsV i=1,--- M, wheref}; is some class?_Z function. Xiio| = | Xi1—Xui2+Xiz |,
The line of argumentation we employ here can be sketched X1i.3 ' asXy 2
as follows. The result of Theorem 1 shows tlgatdirectly where '

influences the ultimate bound @ Thus, knowingz gives

rise_ to a_lsituation vyhere the_ uItimatg boun_depnan be madg as (X1i1) = axXi 1+ 1 (ag—a) (|xai1+ 1| — [xai1 — 1)

arbitrarily small with sufficiently high gains. Now, consid 2

ering the global coupling structure it follows directly tha The Van der Pol oscillator is described by

the “exter.nal’i i_nputui” is fuIINy defirled by the state§ of other %1]  [bixeis— b_szx% L~ bsxais

systems, i.ez = SURy<r< [|Gi (T) || = H (SURy< ¢ ||X\i (T)]]). ol = 3 :

whereH is some (linear) function ofV. By exploiting this 2,2 1%2i.1

observation, we can establish practical cluster synchroniThe parameters are set & = 0.59/0.12, a, = —0.07,

ability under the assumption that the graphis acyclic. az=15a,=0.59/0.162,b; =1, by, =5, bz =5. In addition,
Theorem 3:Consider a collectionz of classesZ; of the systems are equipped with input mags [I» 0] and

systems (1) with coupling (4). Assume that is acyclic, output mapds, [I» O]T, respectively, in order to match the

Vi=1,---,M: W € W and (2) holds. Furthermore, lét be dimensions. The systems are now coupledVily= 1; ®

QUAD(Aj, ) with someg; satisfyingdj — wln, < Gily,. Then 17— 717, W = 1§®15—5|5. Note that these local couplings

> is practically cluster synchronizable. directly satisfy the coupling conditions and in particu(a).

Proof: The proof follows from induction. First, recall Notably,W;, W, € W, A; = —7, andA, = —5. The coupling

that there exists a permutation for such that7 becomes between different classes is chosenvds =r and( 7, 5),

a topologically ordered acyclic directed graph [22]. HencandW;, = 0, which hence makes” an acyclic graph with

Tij =0V i> j. Thus there is at least one clasg, for that T;» =0 and T,y = 1. Both, Chua’s circuit and the Van der

v = 0 in (3) holds. This class will be the basis for thePol oscillator, have been proven to b@AD , i.e., the first

following induction. was shown explicitly, see [17], and the latter implicitlyavi

Basis (i= M): At the basis, due to7 being topologically contraction, see [24]. We have herg= 0. Using arbitrary

ordered, Twj = 0 for j # M. Thus, #u; = 0 for j # M initial values, the above setting is solved inAM.AB using



el
el

Fig. 2.
just the half of the errors for the low gain, gs influencesg; linearly for c; = 0.

ode45 with two different gaing; = 1 andg; = 2. From our
results, the errojje; || with the high gain should be less than
half the error with the low gain. The plots resulting from (8]
our simulation are depicted in Figure 2. One can observe,
that the maximal error for the higher gain is just half the[g]
error of the lower gain. The simulations clearly support our
theoretical findings. [10]

VI. CONCLUSIONS AND FUTURE WORK

We studied practical cluster synchronization for COUp|eH'1]
nonlinear systems. Our setup involved several classes of
identical systems and we showed, how practical clusté¥?]
synchronization can be achieved by a suitable choice of
local coupling gains. The presented results build uporethrg13]
main assumptions: (i) theuAD condition for the dynamical
systems, (i) appropriate couplings between nodes in the
same class, and (iii) an acyclic interconnection structungsj
between nodes in different classes. Based on these raselts,
proposed a constructive recursive procedure to select quﬁ]
coupling gains, such that the synchronization errors of a
system class are ultimately bounded by an a-priori chosen
bound. The theoretical results have been validated on &f!
exemplary network composed of Van der Pol oscillators and
Chua’s circuits. [17]

The main challenge for future work is to overcome the
restrictive assumption that the global interaction stives [1g]
follow an acyclic structure.

(7]
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