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Abstract— We study submanifold stabilization problems from
an input-output perspective. For doing so, we consider feedback
interconnections of relations of signals whose squared distance
to a given submanifold has finite integral. In our framework,
output feedback passivity of the feedforward relation and input
strict passivity of the feedback relation with sufficiently large
excess of passivity, both with respect to the integral squared
distance of their signals to the submanifold under consideration,
is sufficient for submanifold stabilization. We show that the
distance of the signals in the feedback interconnection to the
submanifold remains bounded for bounded exogenous inputs,
thus extending the feedback theorem for passive systems to
submanifold stabilization problems.

I. INTRODUCTION

We study control problems in which the output of a plant
H1 must be brought as close to some desired submanifold
M ⊂ Rn of its output space as the exogenous disturbances
ω permit. This is a submanifold stabilization problem and as
such includes control problems such as setpoint regulation
(in which case M is a singleton), synchronization (in which
case M is the span of the vector of ones, cf. [1]), pattern
generation (in which case M is a homotopy circle, cf. [2]),
and path following (in which case M is the image of a curve,
cf. [3]). We study properties of a controller H2 such that
the feedback interconnection of H1 with H2, as in Fig. 1,
produces signals with bounded integral squared distance to
M for bounded exogenous inputs ω.

In this paper, we particularly study the role that passiv-
ity plays in such feedback interconnections. We define a
meaningful notion of passivity with respect to the integral
distance of a signals to M and derive a passivity theorem
stating that if H1 is output feedback passive and−H2 is input
strictly passive with a sufficiently large excess of passivity,
both with respect to the integral distance of their signals
to M , then the feedback interconnection produces signals
with bounded integral squared distance to M for bounded
exogenous inputs.

We treat H1 and H2 as relations on the Cartesian products
of their sets of input-output signals. This point of view
is similar to Zames [4], [5] and Desoer and Vidyasagar
[6]. As integral distances to M are considered herein, our
approach also bares similarity to the work on almost invariant
subspaces by Basile and Marro [7] and also Willems [8], [9].
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In these latter pieces of work, the distance of a signal to a
subspace must me kept small by an appropriate choice of
the controller. Our goal is similar, but we allow for general
embedded submanifolds.

Passivity has recently been employed as a tool for sta-
bilization of closed sets in state space by El-Hawwary and
Maggiore [10], extending the work on setpoint stabilization
by Byrnes, Isidori, and Willems [11].

In contrast to these state-space methods, passive input-
output relations were recently employed by Scardovi et al.
[12] to study a submanifold stabilization problem for the
particular case where M is the span of the vector of ones.

This paper generalizes the passivity-based input-output
approach to submanifold stabilization to general embed-
ded submanifolds and presents a constructive and graphical
framework for this class of problems, as our examples illus-
trate: We apply our findings to the synchronization problem
and to the pattern generator problem. In the former case, our
results encompass diffusive couplings (cf. [1]). In the latter
case, we present a dimension reduction technique which
simplifies the control problem.
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Fig. 1. Feedback interconnection of plant H1 and controller H2

II. PROBLEM SETUP

We consider the problem of bringing the output g1 of a
plant H1 as close to a smoothly embedded submanifold M
of its output space Rn as initial conditions and exogenous
disturbances ω admit. In particular, we study conditions on
H2 that let H1 produce signals that are close to M , whereby
H1 and H2 are related via the feedback interconnection
depicted in Fig. 1, thus satisfying the feedback equations

f1 = g2 + ω (1)
g1 = f2 (2)

(f1, g1) ∈ H1 (3)
(f2, g2) ∈ H2 (4)

where f1 is the input of the plant and g2 is the output of the
controller. We focus on passivity as a sufficient condition on
H1 and H2 to solve this control problem.



Classically, H1 and H2 are relations on the Cartesian
product of

L 2 =

f : T → Rn
∣∣∣∣∣∣f measurable,

∫
T

‖f (t)‖2 d t <∞


(5)

(or its extension) with itself, where either T = R or T =
[0,∞). With “measurable” we mean Lebesgue measurable
and with d t, we mean dλ (t), where λ is the Lebesgue
measure on T . One then designs H2 such that the norm

‖·‖L 2 : L 2 → R, f 7→

√√√√∫
T

‖f (t)‖2 d t (6)

of g1 is bounded whenever the norm of ω is bounded. In
doing so, it is a convenient fact that

(
L 2, ‖·‖L 2

)
is a normed

vector space which is also complete in the norm ‖·‖L 2 (i.e.,
it is a Banach space). Moreover, with the inner product

〈·, ·〉 : L 2 ×L 2 → R, (f, g) 7→
∫
T

f (t) · g (t) d t, (7)

(
L 2, 〈·, ·〉

)
is a Hilbert space, which is the reason why it

receives particular attention (e.g., the passivity property is
defined via the inner product).

However, for the submanifold stabilization problem, the
distance of g1 to M – not its norm – must be bounded.
Therefore, we consider

L 2
M =

f :T → UϕM

∣∣∣∣∣∣f measurable,
∫
T

d (f (t),M)
2
d t<∞


(8)

where d (x,M) is defined to be the infimal Euclidean dis-
tance of all points in M to x and UϕM is a tubular neigh-
borhood of M . When ϕ is a constant, we refer to a tubular
neighborhood of the form UϕM = {x ∈ Rn|d (x,M) < ϕ}.

To introduce tubular neighborhoods, we require some
terminology: Given a smoothly embedded submanifold M
of Rn, denote its tangent space at x ∈ M by TxM . The
normal space NxM of M at x is defined to be the orthogonal
complement of TxM in Rn. The normal bundle of M is
NM = {(x, y) ∈ M × Rn|y ∈ NxM}. Let UϕNM =
{(x, y) ∈ NM | ‖y‖ < ϕ (x)} and define ρ : UϕNM → Rn,
(x, y) 7→ x+ y with UϕM = ρ

(
UϕNM

)
.

Definition 1 (Tubular Neighborhood): The neighborhood
UϕM of M is said to be a tubular neighborhood of M if it is
the diffeomorphic image of ρ : UϕNM → Rn.

The reason for restricting ourselves to tubular neighbor-
hoods will become clear later. Note however that Rn is a
tubular neighborhood of {0} and hence L 2 = L 2

{0}.
Having the notion of L 2

M at hand, we define

‖·‖L 2
M

: L 2
M → R, f 7→

√√√√∫
T

d (f (t) ,M)
2

d t. (9)

Letting H1 be a relation on L 2 × L 2
M and consequently

showing that ‖g1‖L 2
M

is bounded would solve the submani-
fold stabilization problem.

Example 1: To gain intuition about members of L 2
M , we

here present two signals, one of which is in L 2
M and one

of which is not. Let M = S be the unit sphere. We assume
both signals are measurable and of the form

f : t 7→
[
(1 + a (t)) cos (t)
(1 + a (t)) sin (t)

]
. (10)

With |a (t)| < ϕ ≤ 1, f is restricted to the tubular neighbor-
hood UϕS ⊂ U1

S of S (UϕS is tubular as U1
S is tubular). If now,

in addition, a is an L 2 signal, for instance an oscillatory
signal with an L 2 amplitude, say a (t) = ϕ sin(t)

1+t , then f is
in L 2

S as S has unit radius. This signal is depicted in Fig.
2 (left). If, in contrast, a /∈ L 2, for instance an oscillatory
signal with an constant amplitude, say a (t) = (ϕ− ε) sin (t)
for some small but positive ε, then f would not be in L 2

S .
This signal is depicted in Fig. 2 (right).

S

f

ϕ

UϕS

f (0)

S
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ϕ
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f(t0+2nπ)

Fig. 2. Examples for signals which are (left) or are not (right) in L 2
S

The classical input-output approaches employ the ex-
tended L 2 space L̄ 2, which contains signals that are in
L 2 when truncated after any finite time. This allows one
to consider “unstable” plants as well. In the same spirit, we
do not want to restrict ourselves to plants which produce
signals with bounded distance to M and must thus find a
meaningful truncation. The tubular neighborhood theorem
(cf. [13, section II.11] or [14, chapter 10]) will assist us in
doing so.

Theorem 1 (Tubular Neighborhood Theorem): If M is a
smoothly embedded submanifold, then there exists ϕ : M →
(0,∞) such that UϕM is a tubular neighborhood of M .

In particular, letting P1 : NM → M be the bundle
projection (x, y) 7→ x, it is a consequence of the tubular
neighborhood theorem that

r = P1 ◦ ρ
−1 : ρ

(
UϕNM

)
→M (11)

is a smooth retraction of the tubular neighborhood onto M
(for details on this, we again refer to [13, section II.11] or
[14, chapter 10]). For a given t0 ∈ T , the smooth retraction
r allows us to define the truncation

f t0M (t) =

{
f (t) for t < t0

r (f (t)) elsewhere
(12)

and with this notion at hand, the extension L̄ 2
M of L 2

M is
given by

L̄ 2
M =

{
f : T → UϕM

∣∣∀t ∈ T, f tM ∈ L 2
M

}
. (13)

This is consistent with the construction of the extension L̄ 2

of L 2.



Example 2: As an example for a function which is con-
tained in L̄ 2

M but not in L 2
M , reconsider the situation from

Example 1 with M = S and a (t) = (ϕ− ε) sin (t) for some
small but positive ε. In particular, the truncation of f reads

f t0S : t 7→



[
(1 + a (t)) cos (t)

(1 + a (t)) sin (t)

]
for t < t0[

cos (t)

sin (t)

]
elsewhere

(14)

where we used that, for M = S, r : x 7→
(
1/‖x‖

)
x. As

at0 ∈ L 2 for any t0, it follows that f ∈ L̄ 2
S . In Fig. 3, we

depict f (left) as well as f t0S (right) for some t0.

S

f (t0)

f

f (0)

S
f t0S (t0)

f t0S

normal space of S at f t0S (t0)

f (0)

Fig. 3. Example for a signal (left) which is not contained in L 2
S , but

whose truncation (right) is, thus letting it be in L̄ 2
S

At this point we would like to assure the reader that all
presented notions for L 2

M are consistent with the classical
L 2 notions. In particular, if M is {0}, then we have
that r : x 7→ 0 and that hence, the truncation f t{0} is
the classical truncation and the extension L̄ 2

{0} is just the
classical extension L̄ 2 of L 2. For this reason, we just omit
the subindex {0} and merely write f t for f t{0}.

It may appear that introducing L 2
M solves the submanifold

stabilization problem, as one is tempted to define all known
notions from L 2 for L 2

M by replacing L 2 with L 2
M and

‖·‖L 2 with ‖·‖L 2
M

, consequently applying all known results
from L 2. However, one encounters issues in doing so.
In particular,

(
L 2
M , ‖·‖L 2

M

)
is not a Banach space, nor a

normed vector space, nor even merely a vector space.
If we want to retain these properties, we require a tool rep-

resenting elements of L 2
M in L 2. We are again assisted by

the tubular neighborhood theorem and the smooth retraction
r. The following lemma states that the map

ΠM : (t 7→ f (t)) 7→ (t 7→ f (t)− r (f (t))) , (15)

which also turned out to be useful in [15], indeed allows us
to work with elements of L 2

M as if they were in L 2.
Lemma 1: For any f ∈ L̄ 2

M , ΠM (f) ∈ L̄ 2. In particular,
if f ∈ L 2

M , then ΠM (f) ∈ L 2. Moreover, for any t ∈ T ,
‖ΠM (f tM )‖L 2 = ‖f tM‖L 2

M
and (ΠM (f))

t
= ΠM (f tM ).

The proof is given in the appendix.
In the light of the lemma, it is correct to indeed refer to

the map ΠM as
ΠM : L̄ 2

M → L̄ 2 (16)

with the additional property ΠM

(
L 2
M

)
⊂ L 2.

Example 3: This example illustrates the map ΠM . Re-
consider the situation from Example 1 with M = S and
a (t) = (ϕ− ε) sin (t) for some small but positive ε. As the
normal component of f is just a, we have that ΠSf = a. In
Fig. 4, we depict f (left) as well as ΠSf (right). We invite
keen readers to compare the figure to [8, Fig. 3].

S
f

f (0)

ΠSf t

ΠSf (t)

ΠSf (0)

ΠSf

Fig. 4. A signal from L̄ 2
S (left) and its counterpart from L̄ 2 (right)

resulting from application of ΠS

Lemma 1 on the map ΠM and the construction of the
extension L̄ 2

M reveal why we initially restricted ourselves
to tubular neighborhoods; we would have neither been able
to define the extension L̄ 2

M nor the map ΠM if we had
not imposed this restriction. Further, recalling the tubular
neighborhood theorem, this justifies our restriction to sub-
manifolds (in contrast to general subsets of Rn).

Having gathered all these notions, we now recast the
feedback equations more precisely. In particular, we treat
the plant H1 as a relation on L̄ 2 × L̄ 2

M and the controller
H2 as a relation on L̄ 2

M × L̄ 2. This lets the signals on the
left-hand side of Fig. 1 live in L̄ 2, which is reasonable, as
these characterize input energy and disturbances. However,
we let the signals on the right-hand side of the feedback
interconnection live in L̄ 2

M , as we want to bring the output
of the plant as close to M as ω admits. This lets the feedback
equations read

f1 = g2 + ω ∈ L̄ 2 (17)

g1 = f2 ∈ L̄ 2
M (18)

(f1, g1) ∈ H1 ⊂
(
L̄ 2 × L̄ 2

M

)
(19)

(f2, g2) ∈ H2 ⊂
(
L̄ 2
M × L̄ 2

)
. (20)

We further require a relation E on L̄ 2× L̄ 2
M defining the

impact that ω has on the output g1 of the plant H1, i.e.

E =
{

(ω, g1) ∈
(
L̄ 2 × L̄ 2

M

)∣∣ feedback equations
}
. (21)

The submanifold stabilization problem is then to find a
relation H2 such that the relation E becomes bounded.

Definition 2: We say that a relation H ⊂
(
L̄ 2 × L̄ 2

M

)
is

bounded, if for every f in its domain for which there exists
ε ∈ [0,∞) such that ‖f‖L 2 ≤ ε, there exists δ ∈ [0,∞)
such that for all g with (f, g) ∈ H , ‖g‖L 2

M
≤ δ.

A bounded relation produces outputs whose distance to M
is bounded for inputs whose norm is bounded. Boundedness
of E thus precisely characterizes the goal of the submanifold
stabilization problem, which we address in the following
section.



III. PASSIVITY AND SUBMANIFOLD STABILIZATION

In the foregoing section, we had constructed the map
ΠM in order to work with

(
L 2
M , ‖·‖L 2

M

)
as if it was the

Hilbert space
(
L 2, 〈·, ·〉

)
. We recall that passive relations

on L̄ 2 × L̄ 2 are defined using the inner product 〈·, ·〉 :
L 2×L 2 → R (cf. [6, chapter VI]) and thus define passivity
in the classical fashion but with the original signals replaced
by the ΠM map. As Π{0}f = f , the advantage of this is that
we recover the classical passivity definitions for M = {0}.
Consequently, define

P`e =
{
H ⊂

(
L̄ 2
X × L̄ 2

Y

) ∣∣∣ ∀ (f, g) ∈ H, ∀t ∈ T,〈
ΠX
(
f tX
)
,ΠY

(
gtY
)〉
≥ `

∥∥gtY ∥∥2L 2
Y

+ e
∥∥f tX∥∥2L 2

X

}
(22)

where (X,Y ) can be replaced by either (M, {0}) or
({0},M) such that both H1 and H2 can be in P`e. Alike
terminology in classical works on passivity, we say that a
relation H ∈ P`e is
• passive if e = 0, ` = 0,
• output feedback passive (with the lack of passivity `)

if e = 0, ` ∈ (−∞, 0), and
• input strictly passive (with the excess of passivity e)

if e ∈ (0,∞), ` = 0.
Input strict passivity is also referred to as coercivity.

Our main result generalizes the classical feedback theorem
for passive systems (cf. [6, Section VI.5]) to submanifold
stabilization problems: If H1 is output feedback passive and
−H2 is input strictly passive with a sufficiently large excess
of passivity, then E is bounded.

Theorem 2: If there exists ` ∈ [0,∞) such that H1 ∈ P−`0 ,
then, for any e ∈ (`,∞), for any α ∈ [0,∞), for every
−H2 ∈ Pαe , E is bounded.

Proof: It follows from the feedback equations that

〈ωt,ΠM
(
f t2M

)
〉 = 〈f t1,ΠM

(
gt1M

)
〉 − 〈gt2,ΠM

(
f t2M

)
〉. (23)

As H1 ∈ P−`0 , the inequality

〈ωt,ΠM
(
f t2M

)
〉 ≥ −`

∥∥gt1M∥∥2L 2
M

− 〈gt2,ΠM
(
f t2M

)
〉 (24)

holds true. With −H2 ∈ Pαe , we further have

〈ωt,ΠM
(
f t2M

)
〉 ≥ −`

∥∥gt1M∥∥2L 2
M

+α
∥∥gt2∥∥2L 2 + e

∥∥f t2M∥∥2L 2
M

(25)
and since g1 = f2, for any α ∈ [0,∞), it follows that

〈ωt,ΠM
(
f t2M

)
〉 ≥ (e− `)

∥∥f t2M∥∥2L 2
M

. (26)

Next, by the Cauchy-Schwarz inequality,∥∥ωt∥∥
L 2

∥∥ΠM
(
f t2M

)∥∥
L 2 ≥ (e− `)

∥∥f t2M∥∥2L 2
M

. (27)

Using the third statement of Lemma 1, we arrive at∥∥ωt∥∥
L 2

∥∥f t2M∥∥L 2
M

≥ (e− `)
∥∥f t2M∥∥2L 2

M

. (28)

Under the circumstance that e ∈ (`,∞), this in turn implies

1

e− `
∥∥ωt∥∥

L 2 ≥
∥∥f t2M∥∥L 2

M

. (29)

For any ω in the domain of E for which there exists ε ∈
[0,∞) such that ‖ω‖L 2 ≤ ε, take the limit t→∞, yielding

ε

e− `
≥ 1

e− `
‖ω‖L 2 ≥ ‖f2‖L 2

M
. (30)

Now, for every such ω, choose

δ =
ε

e− `
, (31)

revealing that
‖f2‖L 2 ≤ δ (32)

and hence proving boundedness of E.
We also recover a version of the classical passivity theorem
as a special case.

Corollary 1: If H1 ∈ P0
0, then, for any e ∈ (0,∞), for

every −H2 ∈ P0
e, E is bounded.

Note that all expressions defining passivity here measure
distances of signals to M . Treating M as the image of an
output of H1, the presented passivity notion thus resembles
incremental passivity [16], where the passivity inequality
must hold incrementally for any two input-output tuples, and
equilibrium independent passivity [17], wherein the passivity
inequality must hold incrementally only with respect to one
signal.

Example 4: To illustrate input strict passivity of −H2

graphically, let M = S and, for simplicity, first consider the
condition pointwise in time. Then the condition says that
the angle that g2 encloses with −ΠS (g1) must be acute. The
foregoing results thus state that the integrated angle between
g2 and −ΠS (g1) must be acute, i.e. g2 is allowed to point
outside of the tubular neighborhood Ud(g1(t),S)S of S as long
as it points inside the tubular neighborhood Ud(g1(t),S)S when
integrated. This is depicted in Figure 5.

S

normal space of S at r (g1 (t))

g1 (t)

−ΠS (g1) (t)

r (g1 (t))

g2 (t)

d (g1 (t) ,S)

U
d(g1(t),S)
S

Fig. 5. When integrated, g2 must make an acute angle with −ΠS (g1)

and thus point inside U
d(g1(t),S)
S

We wish to remark here that, since all of notions are
constructed such that they reduce to classical notions for
M = {0}, we also recover the classical feedback theorem
for passive systems and the classical passivity theorem via
the substitution M = {0}. However, we are now also in
the position to solve rather general submanifold stabilization
problems, as we illustrate on examples in the next section.



IV. EXAMPLES

Both synchronization problems and pattern generation can
be stated as submanifold stabilization problems, where M
is the span of the vector of ones in the former case and a
homotopy circle, e.g. the unit circle in the latter case. As we
proposed a rather general framework in the foregoing section,
we discuss these two particular cases within this section in
greater detail.

A. Synchronization

In synchronization or consensus problems, H1 is a group
of systems (i.e. H1 has a diagonal structure) and their output
must be brought to

M = S = span (1n) with 1n =

1
...
1

 ∈ Rn (33)

(cf. [1]). As input strict passivity of −H2 (with sufficiently
large excess of passivity) was shown to be sufficient for
boundedness of E in the foregoing section, we infer that
input strict passivity of −H2 must be sufficient for synchro-
nization when M = S. To rewrite the input strict passivity
condition for M = S, we must first compute ΠS for this case.
This, in turn, requires computation of r. We recall that S is
a subspace and that hence Rn is its tubular neighborhood.
Further, the retraction r from Rn onto S is given by the
orthogonal projection onto S, i.e.

r : Rn → S, x 7→ PSx =
1

n
1n1>n x. (34)

As an interpretation, r returns the stacked mean of its
argument. Consequently, application of ΠS to the output g1
of the plant H1 yields

ΠS (g1) : t 7→
(
I − PS

)
g1 (t) = P∗S g1 (t) , (35)

where I is the identity matrix, i.e., ΠS (g1) returns the
orthogonal projection of g1 onto the orthogonal complement
of S, which is just the stack of deviations of g1 from its
mean, and which is known as the synchronization error in
the literature on synchronization. In fact, ΠS (g1)>ΠS (g1)
is the squared standard deviation of g1, which is frequently
used as a Lyapunov function in synchronization problems.
Treating H2 as a relation on L 2

M × L 2 and thus omitting
the technicalities of the extensions L̄ 2

M × L̄ 2 for simplicity,
the characterization of input strict passivity of −H2 then
reads that for all (g1, g2) ∈ H2,∫

T

−g2 (t) · P∗S g1 (t) d t ≥ e
∫
T

‖P∗S g1 (t)‖2 d t. (36)

One possible ansatz to solve (36) for g2 is to assume that
H2 is linear, say

g2 : t 7→ −Kg1 (t) . (37)

Further, let H2 satisfy (36) pointwise in time, i.e.

Kg1 (t) · P∗S g1 (t) ≥ e ‖P∗S g1 (t)‖2 . (38)

Under these circumstances, we arrive at the following propo-
sition, wherein the columns of B∗S are an orthonormal basis
of the orthogonal complement of S, i.e. B∗SB

∗>
S = P∗S , and

Ksym denotes the symmetric part of K.
Proposition 1: In the above setting, −H2 is input strictly

passive if and only if B∗>S KsymB
∗
S is positive definite, the

nullspace of K is contained in S, and S is an invariant
subspace of K.

Proof: We prove necessity and sufficiency separately.
First, prove necessity. We start with proving that

B∗>S KsymB
∗
S is positive definite. To do so, pick some g1 such

that it attains some value x from the orthogonal complement
of S at time t. Then PSx = 0 and P∗S x = x such that (38)
simplifies to

P∗S x ·KsymP
∗
S x ≥ e ‖P∗S x‖

2
. (39)

As the columns of B∗S are an orthonormal basis of the
orthogonal complement of S, for every x from the orthogonal
complement of S, there exists an y ∈ Rn−1 such that
x = B∗Sy. Substituting this expression for x and B∗SB

∗>
S for

P∗S , we arrive at

B∗SB
∗>
S B∗Sy ·KsymB

∗
SB
∗>
S B∗Sy ≥ eB∗>S B∗Sy · B∗>S B∗Sy. (40)

Recalling that we picked x arbitrarily from the orthogonal
complement of S, the last inequality must hold for all
y ∈ Rn−1. As, in addition, B∗>S B∗S = I , the latter implies
that B∗>S KsymB

∗
S is positive definite. Next, prove that the

nullspace of K is contained in S. To do so, assume for
contradiction that there exists an x from the nullspace of
K such that x /∈ S.

The latter implies that
∥∥x− PSx

∥∥2 is positive, whereas
the former implies that Kx = 0. This contradicts (38). Last,
prove that S is an invariant subspace of K. For the sake of
contradiction, suppose that KPSx /∈ S and P∗S x ·KPSx < 0.
Now decrease P∗S x·KPSx whilst leaving P∗S x·KP∗S x constant
(this is possible as PSx and P∗S x can be chosen independently)
until (38) is violated, thus revealing that there can exist no
such x and that hence S is an invariant subspace of K. This
was the first statement to be proven.

Next, prove sufficiency. To do so, write x as x = PSx +
P∗S x. As PSx ∈ S and S is an invariant subspace of K,
KPSx ∈ S. As P∗S x is in the orthogonal complement of S,
P∗S x · KPSx = 0, simplifying (38) to (39). As B∗>S KsymB

∗
S

is positive definite, there exists an e ∈ (0,∞) that satisfies
this inequality. This was the last statement to be proven.

The proposition reads rather abstract, but we recall that
Laplacian matrices of undirected, connected graphs have all
the mentioned properties. In particular, the excess of passiv-
ity of −H2 is the algebraic connectivity of the graph for this
case, which is readily verified by noting that (39) is just the
variational characterization of the algebraic connectivity of
the graph. This yields the following corollary.

Corollary 2: In the above setting, if K is the Laplacian
matrix of an undirected, connected graph, then −H2 is input
strictly passive. Moreover, the excess of passivity of −H2 is
the algebraic connectivity of the graph.



As Laplacian matrices of connected graphs are regularly
used for linear feedback in synchronization problems, and
as in many of these problems the algebraic connectivity of
the graph must indeed be sufficiently large (cf. [1], [18]),
we could recover this known technique in our framework.
However, we imposed linearity and pointwise satisfaction
as an ansatz. Without this ansatz, one opens the way for
recurrently connected graphs, jointly connected graphs, or
nonlinear couplings (for the former of the three, keen readers
are invited to compare (36) to [19, equation (70)]).

We remark that all results from this section apply to
arbitrary subspaces, where n− 1 must be replaced with the
codimension of the subspace.

B. Pattern Generation

In artificial central pattern generators, one must asymp-
totically stabilize a homotopy circle whilst maintaining an
oscillatory behavior on the homotopy circle (cf. [2] and
references therein). In our discussion, we will consider the
unit sphere

M = S = {x ∈ Rn |‖x‖ = 1} (41)

without loss of generality. Letting H1 be a passive circuit
with oscillatory outputs, in the light of the results from the
foregoing section, we wish to find an input strictly passive
−H2 in order to solve the pattern generation problem. As
the origin can not be retracted to S (all normal spaces of S
intersect at the origin), the largest tubular neighborhood of
S is U1

S . In this tubular neighborhood, r attains the form

r : U1
S → S, x 7→ 1

‖x‖
x. (42)

Proceeding and computing ΠS, one obtains

ΠS (g1) : t 7→
(

1− 1

‖g1 (t)‖

)
g1 (t) . (43)

We again treat H2 as a relation on L 2
M×L 2 instead of L̄ 2

M×
L̄ 2 to omit technicalities such that the characterization of
−H2 being input strictly passive reads that for all (g1, g2) ∈
H2, ∫

T

−g2 (t) ·
(

1− 1

‖g1 (t)‖

)
g1 (t) d t

≥ e
∫
T

∥∥∥∥ (1− 1

‖g1 (t)‖

)
g1 (t)

∥∥∥∥2 d t. (44)

We attempt to solve this inequality via a dimension reduction.
In particular, we study the function

k : T → R, t 7→ 1

‖g1 (t)‖ (1− ‖g1 (t)‖)
g1 (t)·g2 (t) , (45)

as it “measures” the angle which had to be acute in Example
4 by orthogonally projecting g2 onto −ΠSg1, and note that
the condition (44) only depends on the scalar function k and
not on all other n − 1 directions of g2, as the following
proposition states.

Proposition 2: In the above setting, −H2 is input strictly
passive if and only if∫

T

(e− k (t)) d (g1 (t) ,S)
2

d t ≤ 0. (46)

Proof: Decompose g2 (t) into its orthogonal projection
onto

span (g1 (t)) = Nr(g1(t))S (47)

given by

g1 (t)·g2 (t)
1

‖g1 (t)‖2
g1 (t) = k (t)

1− ‖g1 (t)‖
‖g1 (t)‖

g1 (t) (48)

and its rejection from g1 (t), given by

g2 (t)− g1 (t) · g2 (t)
1

‖g1 (t)‖2
g1 (t)

=g2 (t)− k (t)
1− ‖g1 (t)‖
‖g1 (t)‖

g1 (t) (49)

such that, as

ΠS (g1) (t) = g1 (t)− 1

‖g1 (t)‖
g1 (t) ∈ Nr(g1(t))S, (50)

the rejection vanishes in the inner product on the left-hand
side of (44), i.e.

−g2 (t) ·
(
g1 (t)− 1

‖g1 (t)‖
g1 (t)

)
= k (t)

∥∥∥∥g1 (t)− 1

‖g1 (t)‖
g1 (t)

∥∥∥∥2 , (51)

simplifying (44) to the equivalent condition (46), which was
claimed.

The implication of the foregoing proposition is that the
condition (44) on the function g2 could be broken down to
the simpler condition (46) on the scalar function k, which,
simply said, states that k must attain sufficiently large values.
In the proof of the proposition, we saw that this is due to the
fact that normal spaces of S are one-dimensional, or in other
words, that S has dimension n− 1 and codimension 1. This,
in the same fashion, generalizes to other submanifolds in the
sense that the strict passivity condition is always equivalent
to a simpler condition on a function having the codimension
of the submanifold as its dimension.

V. CONCLUSION

We studied the submanifold stabilization problem from an
input-output perspective. For doing so, we replaced the usual
integral squared norm by the integral squared distance to the
submanifold. Establishing a passivity framework for relations
on the sets containing signals whose truncations have finite
integral squared distance to the submanifold, we found that
the feedback interconnection of an output feedback passive
plant and an input strictly passive controller produces signals
of finite integral squared distance to the submanifold for
finite exogenous inputs, as long as the excess of passivity
of the controller is sufficiently large. In the latter sense, we
established a feedback theorem for submanifold stabilization.



APPENDIX: PROOF OF LEMMA 1

Proof: We prove the four statements separately.
First, prove that for any f ∈ L̄ 2

M , ΠM (f) ∈ L̄ 2. To see
this, recall that f ∈ L̄ 2

M is defined as f t0M ∈ L 2
M for any

t0 ∈ T , whereas the latter just means that∫
T

d
(
f t0M (t) ,M

)2
d t <∞. (52)

As we have that

f t0M (t) =

{
f (t) t < t0

r (f (t)) elsewhere,
(53)

and as d (r (f (t)) ,M) = 0 within tubular neighborhoods of
M , it follows that∫

T

d
(
f t0M (t) ,M

)2
d t =

∫
(−∞,t0)

d (f (t) ,M)
2

d t, (54)

where (−∞, t0) must be replaced by [0, t0) for the case that
T = [0,∞). As d (f (t) ,M) = ‖f (t)− r (f (t))‖ within
tubular neighborhoods, it further follows that∫
(−∞,t0)

d (f (t) ,M)
2

d t =

∫
(−∞,t0)

‖f (t)− r (f (t))‖2 d t.

(55)
From

(ΠM (f))
t0 : t 7→

{
f (t)− r (f (t)) t < t0

0 elsewhere,
(56)

we conclude that∫
(−∞,t0)

‖f (t)− r (f (t))‖2 d t =

∫
T

∥∥∥(ΠM (f))
t0 (t)

∥∥∥2 d t,

(57)
revealing that, for any t0 ∈ T ,∫

T

∥∥∥(ΠM (f))
t0 (t)

∥∥∥2 d t <∞, (58)

which is the characterization of ΠM (f) being in L̄ 2. This
was the first statement to be proven.

Next, prove that if f ∈ L 2
M , then ΠM (f) ∈ L 2. To do

so, recall that f ∈ L 2
M is defined as∫

T

d (f (t) ,M)
2

d t <∞. (59)

As d (f (t) ,M) = ‖f (t)− r (f (t))‖ within tubular neigh-
borhoods, ∫

T

‖f (t)− r (f (t))‖2 d t <∞. (60)

As ΠM (f) was defined as t 7→ f (t) − r (f (t)), it follows
that ΠM (f) ∈ L 2. This was the second statement to be
proven.

The identity ‖ΠM (f tM )‖L 2 = ‖f tM‖L 2
M

is proven just as
the first statement, but with <∞ replaced by some constant.

It remains to prove that (ΠM (f))
t

= ΠM (f tM ), where
ΠM

(
f t0M
)

was defined as

ΠM

(
f t0M
)

(t) = f t0M (t)− r
(
f t0M (t)

)
(61)

=

{
r (t)− r (f (t)) t < t0

r (f (t))− r (r (f (t))) elsewhere.

Using the identity r ◦ r = r, we arrive at

ΠM

(
f t0M
)

: t 7→

{
f (t)− r (f (t)) t < t0

0 elsewhere,
(62)

which, comparing with (56), reveals that (ΠM (f))
t equals

ΠM (f tM ).
This was the last statement to be proven.
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