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Abstract We are interested in gradient systems on the special Euclidean group with
application in the control of rigid bodies. This is motivated by the idea of lifting the
gradient system to a control law for a systems with Newtoniandynamics, all in the
spirit of Daniel Koditschek. In particular, we want to compute gradients of distance
functions; in these flows, we can enforce stability of our reference configurations by
construction. Therefore, we first outline the computation of a gradient systems on
SE (3) on the example of a distance function associated with a Riemannian metric
proposed by Frank Park and Roger Brockett. Consequently, wechoose a distance
function that is easy to compute in camera vision systems andderive the correspond-
ing gradient flow.

1 Introduction

The Lie groupSE (3) is of special interest in various applications; amongst them
are camera positioning, vehicle trajectory planning, and robot modeling, to name
a few. For some of these problems, it is important to generatecurves onSE (3)
(planning problem). For others, one wants to move a point onSE (3) to another
(control problem). Both can essentially be described as theproblem of minimizing
distances onSE (3) (offline for the former and online for the latter case).
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Here, we want to consider special gradient algorithms basedon distance func-
tions to solve planning and control problems onSE(3). More precisely, we consider
state feedback control laws for the kinematic equations of arigid body. The consid-
eration of the kinematic equations is not restrictive in theconsidered setup, since
there are methods in literature to derive a controller for the full equations of motion
from the control law for the kinematic equations [5]. We derive the state feedback
laws with the help of distance functions. The resulting closed loop vector field is
then given by the gradient of the respective distance function, which permits the
analysis of the closed loop convergence behavior. We utilize two distance functions.
The first distance function is associated with the Riemannian metric proposed by
Frank Park and Roger Brockett [6]. the second distance function is one that is par-
ticularly easy to compute in camera vision systems.

When choosing coordinate charts, there are established solutions to the above
problems [1]. That is, one chooses an appropriate local parametrization, for instance
Euler angles or quaternions, to then implement known control procedures in these
coordinates. Only, given this, one has to implement a rule that applies when switch-
ing coordinate charts. In contrast, working without coordinate charts can be of in-
terest whether because the resulting methods can be moreobjective [2] or just more
natural [3, 4]. In the past, gradient systems have been used when working without
coordinate charts; in particular, gradients of Morse-Bottfunctions have provided
feedback laws with almost global convergence [7, 8, 9, 10].

The remainder of the paper is structured as follows; section2 entails some pre-
liminaries and the problem formulation, where we explain some basic facts about the
special Euclidean group in subsection 2.1 and state the problem in subsection 2.2. In
section 3, we present our main results. Therein, subsection3.1 contains the design
procedure for the control law based on the scale-dependent metric and subsection
3.2 contains the design procedure for the control law based on distance function
from camera vision. Within both subsections, we split the design procedure into
three subsubsections; subsubsections 3.1.1 and 3.2.1 contain the formulations for
the distance functions, respectively. In subsubsections 3.1.2 and 3.2.2, we derive
the corresponding gradients. Consequently, we propose theassociated control laws
in subsubsections 3.1.3 and 3.2.3 and investigate their convergence properties. We
conclude the paper in section 4.

2 Preliminaries and Problem Statement

In this section, we briefly sketch some facts about the special Euclidean group as
well as the problem under investigation.
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2.1 Preliminaries

In the following, we collect some background information onthe special Euclidean
groupSE(3). For a detailed exposition of the following we refer to [1, Chapter 2].
The special Euclidean group is the setSE (3) = {(R,d)|R ∈ SO(3),d ∈ R

3} together
with the group operation(R1,d1)(R2,d2) 7→ (R1R2,R1d2 + d1), whereSO(3) =
{R ∈ R

3×3|R−1 = R⊤
,detR = 1} is the set of rotation matrices. The tangent space

of SO(3) at a pointR ∈ SO(3) is given by TR SO(3) = {ξ ∈ R
3×3|ξ = RΩ ,R ∈

SO(3) ,Ω =−Ω⊤}. The Lie algebraso(3) of SO(3) is given byso(3) = TI SO(3),
which are the skew-symmetric matrices. For aR

3 association of aso(3) element,
we can use the natural functionQ : so(3) → R

3 given throughQ(Ω)× x = Ωx,
where× is the cross-product. As a consequence, the Lie algebrase(3) of SE(3) is
given by(Ω ,v) whereΩ ∈ so(3) andv ∈ R

3.
A compact and common notation for the elements ofSE(3)which we also utilize

here is the so-called homogeneous representation, where wewrite tuples(R,d) as
matricesH given through

H =

[

R d
0 1

]

∈ SE (3) . (1)

The group operation then corresponds to matrix multiplication. In a similar fashion,
we can also represent the element(Ω ,v) ∈ se(3) as matrices, i.e.

T =

[

Ω v
0 0

]

∈ se(3) . (2)

By this, the tangent space ofSE (3) at a pointH ∈ SE (3) is given by TH SE (3) =
{V ∈ R

4×4|V = HT,H ∈ SE (3) ,T ∈ se(3)}, when using matrix notation, and we
will refer to its elements as

V =

[

ξ ζ
0 0

]

∈ TH SE (3) . (3)

Thus,SE (3) is invariant with respect to every dynamical system of formḢ = HT
with H ∈ SE (3) andT ∈ se(3). One refers to such equations as the kinematic equa-
tions andT underlies a dynamical system itself, which is referred to asthe dynamic
equations. Most generally, the control input is applied to these dynamic equations.
However, one can as well assume to haveT as the control input as one can derive a
suitable input for the dynamic equations for every choice ofT [5].

2.2 Problem statement

We consider control systems onSE (3) of the form

Ḣ = HU , (4)
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whereH ∈ SE (3) is the state of the system andU ∈ se(3) is an element of the Lie
algebra, makingḢ an element of TH SE (3). The problem we want to solve is the
following; find a state-feedback law of the form

U =U (H,H∗) , (5)

such that the closed loop converges to the referenceH∗ ∈ SE(3) for almost any
initial conditionH ∈ SE(3) and such thatH∗ is stable. Although mechanical control
systems usually entail Newtonian dynamics, the above control problem is of interest
for such systems [5]. This is because one can derive a controllaw for the system with
Newtonian dynamics from the control law for the system with dynamics (4).

3 Main results

In the following we want to derive state feedback laws to solve the problem de-
scribed in Section 2.2. We utilize a three-step procedure toderive the feedback law.
In the first step, we define a distance function which measuresthe distance between
our initial configurationH and the desired configurationH∗. In the second step, we
compute the differential of this distance function which weutilize in the third step
to derive a feedback (5) such that the closed loop vector fieldis the gradient of the
distance function. In the subsequent discussion, we show that the resulting closed
loop has the desired convergence properties. We carry out these computations for
two different distance functions which result in two different closed loop systems.
The first one is discussed in Section 3.1 and the second one in Section 3.2.

3.1 A Gradient-Based Controller Based on the Scale-Dependent
Metric

This subsection is dedicated to a control law derived from the gradient of a partic-
ular distance function based on the left-invariant Riemannian metric proposed by
Frank Park and Roger Brockett, commonly referred to as the scale-dependent met-
ric. We subsequently derive the distance function, the corresponding gradient, and
the associated control law.

3.1.1 The Distance Function for the Scale-Dependent Metric

In this section, we compute the distance function based on the Riemannian metric
proposed in [6]. The metric structure both ofSO(3) andSE (3) is of interesting na-
ture and has been investigated excessively, especially by Frank Park [6, 11], among
others. In particular, left-invariant Riemannian metricsare of interest in applica-
tion, as they are independent of inertial coordinates [2], which are the coordinates
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placingR3 in E
3. Herein, we will thus rely on the left-invariant Riemannianmetric

〈·, ·〉 : TH SE (3)×TH SE (3)→R proposed by Park and Brockett [6] given through

〈V,V ∗〉=

[

Q
(

R⊤ξ
)

R⊤ζ

]⊤ [

αI 0
0 β I

][

Q
(

R⊤ξ ∗
)

R⊤ζ ∗

]

, (6)

where
[

Q(R⊤ξ) R⊤ζ
0 0

]

= T and
[

Q(R⊤ξ ∗) R⊤ζ ∗

0 0

]

= T ∗; The procedure of bringing

tangent elements to the identity by group multiplication and then calculating the
Riemannian metric with elements of the Lie algebra is commonon Lie groups.
In mechanics, the resulting notion is called thetwist T = H−1V (H ∈ SE (3),
V ∈ TH SE (3), andT ∈ se(3)). The Riemannian metric (6) is called thescale de-
pendent metric. This if of interest as the scale-dependence vanishes as we progress
with our design procedure, an effect that can be interestingin practice [12, 13, 14].

The geodesicsΓ : R → SE (3), s 7→ Γ (s) betweenH andH∗ associated with
(6) are found by minimizing the functional

∫ 1
0 〈

d
dsΓ ,

d
dsΓ 〉ds over all curves joining

H andH∗ such thatΓ (0) = H andΓ (1) = H∗. Calculating geodesics can in gen-
eral turn out to be tedious and is not within the scope of this paper. We therefore
omit the precise calculation and instead refer to Park [11] for details. To sketch the
calculation, we only want to mention that geodesics onSE (3) betweenH andH∗

associated with the Riemannian metric (6) can be obtained from the geodesics in
SO(3) andR3, yielding

Γ (s) =

[

Rexp
(

log
(

R⊤R∗
)

s
)

d + s(d∗− d)
0 1

]

, (7)

where log :SO(3) → so(3) and exp :so(3) → SO(3) are the logarithmic and the
exponential map, respectively. Notably, (7) is the one-parameter family of screw
motions.

The twistT of Γ is given through the formula

T (s) = Γ (s)−1 d
ds

Γ (s) , (8)

and we have

T (s) =

(

log
(

R⊤R∗
)

,

(

exp
(

log
(

R⊤R∗
)

s
))⊤

R⊤ (d∗− d)

)

. (9)

Applying the Riemannian metric (6) to the twist (9), we have

〈
dΓ (s)

ds
,

dΓ (s)
ds

〉= α
(

Q
(

log
(

R⊤R∗
)))⊤

Q
(

log
(

R⊤R∗
))

+β (d∗−d)⊤ (d∗−d) ,

which we integrate over the interval[0,1]. Then, applying the useful identity
2Q(Ω)⊤ Q(Ω) = tr

(

Ω⊤Ω
)

for Ω ∈ so(3), we arrive at our distance function
d : SE (3)× SE (3)→ R given by
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d2 (H,H∗) =
α
2

tr

(

(

log
(

R⊤R∗
))⊤

log
(

R⊤R∗
)

)

+β (d∗− d)⊤ (d∗− d) , (10)

which just agrees fine with the distance function obtained in[11].

3.1.2 The Gradient for the Scale-Dependent Metric

We are hence in the position to describe our error functione : SE (3) → R as the
distance betweenH andH∗, meaninge is the same function asd, only for fixedH∗.
This is just writinge(H) = d2 (H,H∗). We can therefore formulate our design goal
as the the optimization problem

minimize e(H)

subject toH ∈ SE (3) . (11)

Next, as we have takene as our “cost”, we have to compute the direction in which
e decreases, i.e. the tangent element ofSE (3) which is gradient ofe. For doing so,
we first need the directional derivative ofe atV ∈ TSE (3), which is

dH e(V ) =
d

dγ
e◦A(γ)

∣

∣

∣

∣

γ=0
, (12)

whereA : [−ε,ε]→ SE (3) is such thatA(0) = H and d
dγ A(γ) =V . Writing A(γ) =

(RA (γ) ,dA (γ)) andV = (ξ ,ζ ), we have

α tr

(

(

log
(

R⊤
A (γ)R∗

))⊤
R∗⊤RA (γ)

d
dγ

R⊤
A (γ)R∗

)

+ 2β (d∗−dA (γ))⊤
(

−
d

dγ
dA (γ)

)
∣

∣

∣

∣

γ=0
=

=α tr

(

(

log
(

R⊤R∗
))⊤

R∗⊤Rξ⊤R∗

)

+2β (d∗−d)⊤ (−ζ ) = dH e(V ) . (13)

To obtain the gradient, one has to apply the formula

〈grade(H) ,V 〉= dH e(V ) , (14)

whereV is assumed to be tangent to the same element, that grade(H) is tangent to,
and to solve for grade(H). Using the representation grade(H) =

(

ξgrad,ζgrad
)

, we
arrive at α

2
tr
(

ξ⊤
gradξ

)

+β ζ⊤
gradζ = dH e(V ) . (15)

Knowing that the trace is invariant under both, cyclic permutations and transposing,
and applying the rule(log(R))⊤ = − log(R) for R ∈ SO(3), we are able to equate
coefficients between (13) and (15) to get

grade(H) =

[

−2R∗ log
(

R⊤R∗
)

R∗⊤R −2(d∗− d)
0 0

]

. (16)
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3.1.3 The Control Law for the Scale-Dependent Metric

We arrive at the dynamical systeṁH =−grade(H). That is

Ḣ =

[

2R∗ log
(

R⊤R∗
)

R∗⊤R 2(d∗− d)
0 0

]

, (17)

similarly to the results of Bullo and Murray [15], and we willconsequently investi-
gate the stability of (17).

Remark 1. If we want to include time-dependence ofH∗ explicitly (in the sense that
it is a reference signal), and ifH∗ (t) is sufficiently smooth, we could repeat the last
steps of our derivation to get

Ḣ =

[

2R∗ log
(

R⊤R∗
)

R∗⊤R−R∗Ṙ∗⊤R 2(d∗− d)+ ḋ∗

0 0

]

(18)

instead of (17).

Theorem 1. The equilibrium H = H∗ of (17) is asymptotically stable.

Proof. Suppose the Lyapunov function candidateW (H) = e(H). We haveW posi-
tive semidefinite becaused is a distance function. Further,W is zero iffH = H∗. We
take the directional derivative

Ẇ (H) =
α
2

tr

(

(

R∗⊤RṘ⊤R∗
)⊤

log
(

R⊤R∗
)

+
(

log
(

R⊤R∗
))⊤

R∗⊤RṘ⊤R∗

)

−2β ḋ⊤ (d∗−d) ,

and, substituting (17) into (3.1.3), we have

Ẇ (H) = 2α tr

(

(

log
(

R⊤R∗
))2

)

−4β (d∗− d)⊤ (d∗− d) , (19)

which equalsẆ (H) =−4W (H) and means thaṫW (H) is negative semidefinite and
zero ifH = H∗. ⊓⊔

3.2 A Gradient-Based Controller Based on a Distance Function
from Camera Vision

Again, we split the subsection into three parts. First, we define our distance function.
Then, we take the gradient with respect to one of its arguments. Consequently, we
define our control law accordingly and investigate its convergence properties.

3.2.1 The Distance Function from Camera Vision

We could see that the gradient flow of the distance function (10) computed above
had some nice convergence properties. However, to compute the distance function
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(10) one has to compute the rotation matrices of the current and the desired config-
uration, respectively. Instead, in camera vision systems,it is common to only know
theposition of some characteristic points of the rigid body. These points are usually
captured with camera markers, e.g. retroflective or coloredmarkers. In such settings,
the distance between the current and the desired position ofthe markers

d2 (H,H∗) = ∑
b∈M

b⊤ (R−R∗)⊤ (R−R∗)b+(d− d∗)⊤ (d − d∗) (20)

whereM is the set of marker positions in body-fixed coordinates, appears to be an
appropriate distance function. In particular, it approximates the volume enclosed by
the body particles between current and desired position

d2 (H,H∗) =

∫

B
b⊤ (R−R∗)⊤ (R−R∗)bdb+(d − d∗)⊤ (d− d∗) , (21)

whereB is the set of body particles in body-fixed coordinates. We nowmimic the
steps taken to arrive at (17).

3.2.2 The Gradient for the Distance Function from Camera Vision

First, we definee(H) = d2 (H,H∗) and formulate the optimization problem (11) to
then compute the directional derivative

dH e(V ) =−
∫

B
b⊤

(

R∗⊤ξ + ξ⊤R∗
)

bdb+2(d− d∗)⊤ ζ (22)

and apply dH e(V ) = 〈grade(H) ,V 〉. We thus have

−

∫

B
b⊤

(

R∗⊤ξ +ξ⊤R∗
)

bdb+2(d −d∗)⊤ ζ = αQ
(

R⊤ξgrad
)⊤

Q
(

R⊤ξ
)

+β
(

R⊤ζgrad
)⊤ (

R⊤ζ
)

. (23)

Equating coefficients forζ , we haveζgrad=
2
β (d− d∗). Equating what remains, we

arrive at

−

∫

B
b⊤

(

R∗⊤ξ + ξ⊤R∗
)

bdb =
α
4

tr
(

ξ⊤
gradξ + ξ⊤ξgrad

)

, (24)

where we have used the identities 2Q(Ω1)
⊤ Q(Ω2) = tr

(

Ω⊤
1 Ω2

)

, Ω1,Ω2 ∈ so(3)
and 2tr(A) = tr

(

A+A⊤
)

. We now suppose thatξ andξgrad are both tangent toR
and hence use the ansatzξ = RΩ , ξgrad= RΩgrad. This yields

∫

B
b⊤

(

ΩR⊤R∗−R∗⊤RΩ
)

bdb =−
α
4

tr
(

ΩgradΩ +ΩΩgrad
)

. (25)

It follows by some tedious computations that

Ωgrad=
2
α

∫

B
Ω1b⊤Ω1R⊤R∗b+Ω2b⊤Ω2R⊤R∗b+Ω3b⊤Ω3R⊤R∗bdb (26)
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satisfies (25) for allΩ ∈ so(3), whereΩ1, Ω2, Ω3 are the generators of the algebra

so(3) given by Ω1 =
[

0 0 0
0 0 −1
0 1 0

]

, Ω2 =
[

0 0 1
0 0 0
−1 0 0

]

, andΩ3 =
[

0 −1 0
1 0 0
0 0 0

]

. Consistency

between (25) and (26) can however be checked by substituting(26) back into (25).
This turns out to be true for allΩ ∈ so(3).

3.2.3 The Control Law for the Distance Function from Camera Vision

Interestingly, the gradient flow of (21) is, in contrast to the gradient flow of (10),not
scale-independent. Instead of (17), we hence have

Ḣ =

[

− 2
α R

∫

B ∑3
i=1 Ωib⊤ΩiR⊤R∗bdb − 2

β (d− d∗)

0 0

]

(27)

and we are consequently interested in the stability of the equilibrium H = H∗ of
(27).

Theorem 2. The equilibrium H = H∗ of (27) is asymptotically stable.

Proof. Consider the Lyapunov function candidateW (H) = e(H). W is positive
semidefinite becausee is a distance function andW (H) = 0 iff H =H∗. Now, taking
the directional derivative, we have

Ẇ (H) =

∫

B
−b⊤

(

R∗⊤Ṙ+ Ṙ⊤R∗
)

bdb+2(d − d∗) ḋ. (28)

Substituting (27), this is

Ẇ (H) =
2
α

∫

B
b⊤

(

R∗⊤R
(

3

∑
i=1

Ωib
⊤ΩiR

⊤R∗b
)

+
(

3

∑
i=1

Ωib
⊤ΩiR

⊤R∗b
)⊤

R⊤R∗
)

bdb−
4
β
(d −d∗)⊤ (d −d∗)

and we substituteb⊤R∗⊤RΩib = ξi to see that the above is in fact

Ẇ (H) =−
2
α

∫

B
2ξ 2

1 +2ξ 2
2 +2ξ 2

3 db−
4
β
(d− d∗) (d− d∗) (29)

which satisfiesẆ (H)≤ 0 andẆ (H) = 0 if H = H∗. ⊓⊔

4 Conclusion

Inspired by the special properties of distance functions wehave computed two gradi-
ent systems on the special Euclidean group with the intention to use them as control
laws for rigid bodies under Newtonian dynamics. In the first case, we have cho-
sen a distance function that we derived from the scale-dependent metric of Frank
Park and Roger Brockett. We found that the resulting system has an asymptotically
stable equilibrium at the reference configuration. Subsequently, we mimicked this
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approach with a distance function that is particularly suited for computation in cam-
era vision systems. Again, we could find that the corresponding gradient system had
nice convergence properties; the reference configuration is an asymptotically stable
equilibrium.

Open topics include the reduction of the number of feedback variables, inclusion
of joint and workspace constraints, as well as the formulation of our control laws
for systems under Newtonian dynamics.
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