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Raffaele Soloperto, Johannes Köhler, Matthias A. Müller, Frank Allgöwer

Abstract— In this paper, we provide a novel robust collision
avoidance approach that is based on a general tube-based MPC
framework. We consider collision avoidance for general non-
linear uncertain systems with moving obstacles. The resulting
optimization problem can be handled by standard nonlinear
programming solvers. Moreover, we provide formal guarantees,
such as recursive feasibility, constraint satisfaction, as well as
robust collision avoidance. We demonstrate the efficacy of the
proposed method through a simulation of an autonomous car
during realistic manoeuvres.

I. INTRODUCTION

Motivation

In several practical applications, an autonomous system
evolves in an environment with obstacles, which may be
represented by humans, objects, as well as other systems.
In such scenarios, a fundamental task of the controller
is the ability to plan a collision-free trajectory in order
to guarantee the safety of the controlled object and of
the obstacles. Facilitated by the increase of computational
power, real-time optimization-based trajectory planning has
become more common in different areas, spanning from
autonomous cars to robots [1], [2]. These methods rely on
the online solution of an optimal control problem, based
on the knowledge of the system and of the surrounding
environment. In particular, Model Predictive Control (MPC)
is one of the most promising approaches to handle such
multivariable constrained control problems [3], [4], [5]. MPC
uses the model of the process to control for predicting the
evolution of the system over a finite horizon while optimizing
a user-defined cost function. This procedure is then repeated
at each time instant in a receding horizon fashion. In general,
the performance of an optimization-based trajectory planning
approach is influenced by the uncertainty in the model and
in the environment. Guaranteeing hard constraint satisfaction
(e.g. collision avoidance) in the presence of uncertainty
is of crucial importance, and this can be tackled within
a robust MPC framework. In the literature, different such
robust MPC approaches have been proposed. Within this
work, we exploit so-called tube-based methods such as, e.g.,
[6], [7], [8], [9], [10]. These methods typically construct a
pre-stabilizing controller together with a tube that contains
the real system state. Robust constraint satisfaction is then
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ensured by tightening the nominal constraints according to
the constructed tube.

In this paper, we make use of the ability of robust MPC to
predict both the tube containing the actual trajectory of the
system, as well as the uncertain movements of the obstacles,
in order to guarantee safe collision avoidance in presence of
uncertainty.

Related work

There exists a vast amount of literature on collision avoid-
ance, spanning from optimization-based collision avoidance
methods, to dynamic programming [11], graph search [12] or
reachability analysis [13]. However, since collision avoidance
problems are, in general, NP-hard [14], the majority of
the practical approaches are often problem specific. For
a comprehensive review on existing obstacles avoidance
algorithms, we refer the reader to [15], [16], [17], [18].
Optimization-based collision avoidance methods express the
collision avoidance problem as an optimal control problem,
which is then solved through numerical optimization tech-
niques. Common approaches in obstacle avoidance study the
simplified case of point-mass models, and then consider the
shape of the object by inflating the obstacle. The case of
full-dimensional objects has been studied in [1], where the
authors assume that all the involved objects are rectangular,
and then formulate collision avoidance by keeping all the
vertices of the controlled object outside the obstacles. In
[19], the authors consider a general full-dimensional object,
introduce the notion of signed distance, and propose a
sequential linearization algorithm in order to overcome the
non-convexity of the signed distance problem.

Collision avoidance can be incorporated into standard
MPC approaches as general nonlinear constraints. How-
ever, this results in a non-convex and, in general, non-
smooth optimization problem, which might not be suitable
for standard solvers, and thus real time application. In [20],
a smooth reformulation of the collision avoidance problem
for point-mass controlled objects and polyhedral obstacles
is proposed, while in [21] this procedure is generalized
to full-dimensional objects, where exact knowledge of the
controlled object and of the obstacles is considered.

Contribution

In this paper, we provide a novel robust collision avoidance
approach that is based on a general tube-based robust MPC
framework. In order to obtain a smooth reformulation of
the collision avoidance constraints, we utilize the methods



in [20], [21]. The novelty of the proposed method can be
summarized as follows
• General uncertain nonlinear systems can be handled. We

consider general classes of uncertainty, such as model
mismatch and external disturbances.

• We consider the movement of obstacles to be subject to
uncertainty, and to change their position and shape in
time.

• Formal theoretical guarantees are provided, such as
recursive feasibility, constraint satisfaction and robust
collision avoidance.

The proposed framework is formulated such that various
existing tube-based MPC approaches can be employed. As
a particular example, we show the efficacy of the proposed
approach by using a novel nonlinear robust MPC framework,
proposed in [10]. As a simulation example, we demonstrate
how a nonlinear system, representing a car, behaves during
an over-taking manoeuvre in a realistic scenario. A video
animation of the shown example can be found at https:
//www.youtube.com/watch?v=YeftO1QYJk8.

Notation

The quadratic norm with respect to a positive definite
matrix Q = Q> is denoted by ‖x‖2Q = x>Qx. The
Minkowski sum of two sets is defined by U⊕V := {u+ v :
u ∈ U, v ∈ V}. The positive real numbers are R≥0 = {r ∈
R : r ≥ 0}. The power set of a set S is denoted by 2S.

II. STANDARD ROBUST MPC

This section introduces the nonlinear system dynamics,
and summarizes the general tube-based MPC approach.

A. Nonlinear System

We consider the following nonlinear perturbed discrete-
time system

xt+1 = fw(xt, ut, dt). (1)

with state xt ∈ Rn, control input ut ∈ Rm, and disturbance
dt ∈ D ⊂ Rq . The nominal prediction model is given by

xt+1 = f(xt, ut). (2)

We impose state and input constraints as follows

(xt, ut) ∈ Z, t ≥ 0, (3)

for some Z ⊆ Rn+m.

B. Robust MPC scheme

In the following, we present the general formulation of a
robust MPC scheme, together with the related assumptions.

Assumption 1. There exists a function Φ : 2R
n×Rm×2R

q →
2R

n

that bounds all the possible open-loop states, for a given
input ut, such that

f(xt, ut, dt) ∈ Xt+1 := Φ(Xt, ut,D),

for all xt ∈ Xt, (xt, ut) ∈ Z and all d ∈ D. Furthermore, for
all u ∈ U, the function Φ satisfies the following monotonicity
property

X1 ⊆ X2 ⇒ Φ(X1, u,D) ⊆ Φ(X2, u,D). (4)

We define the open-loop cost as follows

JN (X·|t, u·|t) =

N−1∑
k=0

`(Xk|t, uk|t) + Vf (XN |t), (5)

with some stage cost ` and terminal cost Vf .

Assumption 2. There exists a terminal region Xf ⊆ Rn,
a terminal cost Vf : 2R

n → R, and a terminal controller
κf : 2R

n → Rm such that for all X ⊆ Xf and for all x ∈ X

Φ(X, κf (X),D) ⊆ Xf ,
Vf (Φ(X, κf (X))) ≤ Vf (X)− l(X, κf (X)),

(x, κf (X)) ∈ Z.

Finally, the optimization problem is defined as follows

VN (xt) = min
u·|t,X·|t

JN (X0|t, u·|t) (6a)

s.t. Xk+1|t = Φ(Xk|t, uk|t,D), (6b)
{xt} ∈ X0|t, (6c)
XN |t ⊆ Xf , (6d)
(xt+k, ut+k) ∈ Z, ∀xt+k ∈ Xk|t, (6e)
k = 0, . . . , N − 1.

The solution of (6) are the optimal sets X∗·|t and the input
trajectory u∗·|t. The resulting closed-loop system is given by

xt+1 = fw(xt, ut, dt), ut = u∗0|t. (7)

Remark 1. Assumption 1 is a general condition used in
tube-based MPC. In this paper, we do not consider a specific
choice of Φ, but we rather focus on a more general and con-
ceptual level. This gives the user the freedom to choose any
tube-based robust MPC formulation satisfying Assumption
1. In the following, we briefly discuss how Assumption 1 is
exemplarily satisfied in [6], [7], [8], [9], [10].

1) Linear systems subject to bounded additive distur-
bance. In the case of unstable systems, a pre-stabilizing
control law is added and then the reformulated stabilized
system is considered, compare [6]:

• In [6] the sets X·|t represent the forward reachable sets
of the stabilized disturbed system, starting from X0|t =
{x0|t}, and centered around some nominal predicted
trajectory x·|t.

• In [7] the sets X·|t have a constant size and are given by
the so-called minimal disturbance invariant set (com-
pare [22]) centered around some nominal predicted
trajectory x·|t. The initial state x0|t of such a trajectory
is optimized at each time instant.
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2) Nonlinear system subject to bounded disturbance:

• In [8] only additive disturbances are considered.
The sets X·|t are hyperboxes constructed to over-
approximate the forward reachable sets of the system.
Since the system is not assumed to be stable (nor pre-
stabilized), the sets X·|t might be subject to a fast
and unbounded increase. The initial set is defined as
X0|t := {xt}.

• In [9] nonlinear input-affine uncertain systems are
considered. The sets Xk|t are ellipsoidal robust forward
invariant tubes, parametrized through matrices Qk|t ∈
Rn×n, and centered around some nominal trajectory,
starting from X0|t := {xt}.

• In [10] uncertain nonlinear systems are considered,
which are assumed to be locally incrementally stabiliz-
able. The initial set is defined as X0|t := {xt}. The tube
X·|t is then implicitly defined by an additional scalar
optimization variable that characterizes the sublevel
sets of an incremental Lyapunov function, centered
around some nominal trajectory (compare Sec. IV).
In both [9] and [10], the tubes Xk|t are bounded for
stable and unstable systems, for any k ≥ 0. Moreover,
the optimal control problem (6) can also aim at mini-
mizing their size. In [9], the predicted tubes might be
more accurate, i.e. smaller, than the tubes predicted as
proposed in [10], on the other hand, the approach in [9]
strongly increases the computational demand for large
n, while [10] has a computational demand essentially
equivalent to a nominal MPC algorithm.

Theorem 1. Let Assumptions 1 and 2 hold, and suppose that
problem (6) is feasible at time t = 0. Then (6) is recursively
feasible and the constraints (3) are satisfied for the closed-
loop system (7).

Proof. This is a standard result in robust MPC, see, e.g., [6],
[7], [8], [9], [10].

III. ROBUST COLLISION AVOIDANCE

This section shows how to incorporate robust collision
avoidance constraints into a general robust MPC framework
as shown in Section II-B. In particular, Section III-A and
Section III-B mathematically describe the property of the
object and of the obstacles, respectively. Section III-D pro-
vides additional conditions on the tube and on the so-called
safe terminal region. In Section III-E, we show how the gen-
eral collision avoidance constraints can be converted into a
smooth reformulation, based on [20], [21]. Finally, in Section
III-F we present the proposed robust MPC formulation for
collision avoidance, and the theoretical analysis is detailed
in Section III-G.

Remark 2. For simplicity, we will consider the controlled
object, the obstacles and their over-approximations, to be
polytopes. However, any compact convex sets, represented
by a conic relation, can be used without loss of theoretical
guarantees.

A. Object description

In this paper, we consider the controlled object E(xt) to be
modelled as a point-mass, i.e. with no shape and dimension,
as well as a full-dimensional object.

1) Point-mass Object: The object has no shape nor di-
mension, hence, it can be described by its position, defined
by a general nonlinear function of the state, px : Rn → Rnp ,
as follows

E(xt) := px(xt). (8)

2) Full-Dimensional Controlled Object: The object occu-
pies a certain space E(xt) ⊆ Rnp , defined as

E(xt) := px(xt)⊕ B(xt), (9)

where B(xt) is a convex polytope

B(xt) := {y ∈ Rnp : E(xt)y ≤ e(xt)}, (10)

for some E : Rn → Rnh×np , e : Rn → Rnh , where nh ∈ N
is the number of half-spaces defining the polytope B.

Remark 3. Note that (9) and (10) do not impose a fixed
shape nor a fixed size to the controlled object.

A common formulation of E(xt) is the following

E(xt) = px(xt)⊕R(xt)B,

where R(xt) is the rotation matrix and B is the physical
shape of the object.

B. Obstacle Description

In this paper, we consider M ≥ 0 obstacles that the system
must avoid. We study the case where each obstacle may move
its center and/or vary its shape with time, i.e., can be defined
as a general set

Omt ⊂ Rnp , m = 1, . . . ,M. (11)

We do not assume to exactly know the current space occupied
by the obstacle, nor its evolution in time Omt+k, k ≥ 0.

Assumption 3. There exist known prediction sets Omk|t
defined as

Omk|t = {y ∈ Rnp : Amk|ty ≤ b
m
k|t}, k = 0, . . . , N, (12)

such that

Omt+k ⊆ Omk|t, k = 0, . . . , N, m = 1, . . . ,M (13a)

Omk|t+1 ⊆ Omk+1|t, k = 0, . . . , N − 1, m = 1, . . . ,M.

(13b)

Condition (13a) implies that the obstacle at time t + k
is contained in the k-steps ahead prediction at time t of
the obstacle, while (13b) ensures that the prediction of the
obstacle gets more accurate with time, see Fig. 2. This
concept can be thought as equivalent to the tube constructed
in a general tube-based MPC, where the evolution of the
system predicted at time t+ 1 for k steps ahead is contained
inside the predicted evolution at time t for k+1 steps ahead.
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Fig. 1: Exemplary illustration of the real and predicted
obstacle number 1 at time t = 0, 1, 2.

Remark 4. Suppose that the obstacle is a polytope, and
its future movements are unknown, but bounded by a convex
polytope H ⊂ Rnp containing the origin in its interior. Then,
Assumption 3 is, for example, fullfilled with

Omk|t := Omt ⊕ kH.

A more practical example of how Assumption 3 is satisfied
can be found in Section IV.

C. Obstacle avoidance formulation

The mathematical formulation of collision avoidance can
be written as follows

E(xt) ∩Omt = ∅, m = 1, . . . ,M, t ≥ 0. (14)

However, (14) is, in general, non-convex and non-
differentiable. A common way of smoothly formulating
collision avoidance is based on the notion of distance [20]:

dist(E(x),O) := min
r
{‖r‖ : (E(x)⊕ r) ∩O 6= ∅}.

Collision avoidance can then be ensured by requiring

dist(E(x),O) > dmin (15)

where dmin ≥ 0.

Remark 5. An alternative solution to the distance function
is the so-called signed distance function. The usage of the
signed distance function can modify the strong collision
avoidance constraint in (14), into soft constraints by allowing
the object to penetrate the obstacle, compare [20], [21].

D. Tube for robust collision avoidance

Assumption 4. There exists a region Xsafe ⊆ Rnp , such that

dist(Xsafe,OmN |t) > dmin, ∀t ≥ 0, m = 1, . . . ,M. (16)

Assumption 4 guarantees the existence of a region such
that if the object is contained in such a region then it does
not collide with any obstacle.

Assumption 5. There exists a function Θ : 2R
n → 2R

np

defined as

Θ(Xk|t) := Sk|t, (17a)
Sk|t := {y ∈ Rnp : Gk|ty ≤ gk|t} (17b)

such that the following conditions are satisfied

E(x) ⊆ Θ(Xk|t), ∀x ∈ Xk|t, (18a)
Xk|t+1 ⊆ Xk+1|t ⇒ Θ(Xk|t+1) ⊆ Θ(Xk+1|t), (18b)
Θ(Xf ) ⊆ Xsafe. (18c)

The function Θ overapproximates the space occupied by
the object knowing that the state is contained inside the set
Xk|t. In Section IV, we show an example of how Sk|t can
be defined.

Remark 6. The tightest set Θ(Xk|t) that satisfies (18a),
(18b) is given by

Θ(Xk|t) := ∪x∈Xk|tE(x). (19)

However, this set is not necessarily a polypote. Moreover, an
analytical description of this set might be difficult to derive,
hence, an over-approximation is typically used.

E. Smooth Obstacle Avoidance formulation

In the following, we exploit the subsequent proposition
which has been established in [20], [21].

Proposition 1. Let dmin ≥ 0. Then the following equivalence
holds

dist(Θ(Xk|t),Omk|t) > dmin ⇔ ∃λmk|t ≥ 0, µmk|t ≥ 0 :

− gm>k|t µ
m
k|t − b

m>
k|t λ

m
k|t > dmin

Gm>k|t µ
m
k|t +Am>k|t λ

m
k|t = 0

‖Am>k|t λ
m
k|t‖ ≤ 1 (20)

where λmk|t, µ
m
k|t ∈ Rnp .

Proposition 1 yields a smooth reformulation (20) of the
posed collision avoidance constraints (15), which can be
handled by standard gradient-based optimization algorithms.

F. Collision avoidance with robust MPC

In the following, we present the proposed robust MPC
scheme. The basic idea is to employ the knowledge of
the tubes Xk|t and sets Θ(Xk|t) to ensure robust constraint
satisfaction and robust collision avoidance. The proposed
nonlinear robust MPC scheme is based on the following
optimization problem:

VN (xt, t) = min
u·|t,X·|t,λm

·|t,µ
m
·|t

JN (X·|t, u·|t) (21a)

s.t. Xk+1|t = Φ(Xk|t, uk|t,D), (21b)
{xt} ∈ X0|t, (21c)
XN |t ⊆ Xf , (21d)
(xt+k, ut+k) ∈ Z, ∀xt+k ∈ Xk|t, (21e)

− g>k|tµ
m
k|t − b

m>
k|t λ

m
k|t > dmin, (21f)

G>k|tµ
m
k|t +Am>k|t λ

m
k|t = 0, (21g)

‖Am>k|t λ
m
k|t‖ ≤ 1, λmk|t ≥ 0, µmk|t ≥ 0, (21h)

k = 0, . . . , N − 1, m = 1, . . . ,M,

with Amk|t, b
m
k|t defined as in (12) and Gk|t, gk|t as in (17).

The solution of (21) are the optimal sets X∗·|t, the input
trajectory u∗·|t, and the dual variables λm∗·|t , µm∗·|t .

The resulting closed-loop system is, then, given by

xt+1 = fw(xt, ut, dt), ut = u∗0|t. (22)



G. Theoretical Analysis

We are now in a position to state the main result of this
work.

Theorem 2. Let Assumptions 1, 2, 3, 4 and 5 hold, and
suppose that (21) is feasible at time t = 0. Then (21) is
recursively feasible, the constraints (3) are satisfied and the
object avoids the obstacles, satisfying (15), for the closed-
loop (22).

Proof. As shown in [23, Prop. 3.31], (13b) in Assumption 3
implies that there exists a matrix Hm

k|t+1, with non-negative
entries, such that, for k = 0, . . . , N − 1

Hm
k|t+1A

m
k|t+1 = Amk+1|t (23a)

Hm
k|t+1b

m
k|t+1 ≤ b

m
k+1|t (23b)

1) Candidate solution for robust MPC: Recursive satis-
faction of (21b), (21c), (21d), (21e) follows as in Theorem
1. In particular, as is standard in robust MPC, to this end
candidate sequences X·|t+1 and u·|t+1 are defined satisfying

Xk|t+1 ⊆ X∗k+1|t, k = 0, . . . , N − 1, (24a)

uk|t+1 := u∗k+1|t, k = 0, . . . , N − 2, (24b)

uN−1|t+1 := κf (XN−1|t+1), (24c)
XN |t+1 := Φ(XN−1|t+1, uN−1|t+1,D). (24d)

Recursive satisfaction of (21d) is ensured by Assumption 2
and (24d), while recursive satisfaction of (21e) follows from
the definition of the candidate solution in (24a), (24b), (24c),
(24d) and Assumption 2.

2) Candidate Solution for collision avoidance: Assump-
tions 5 and (24a) imply that, for k = 0, . . . , N − 1,
Θ(Xk|t+1) ⊆ Θ(X∗k+1|t), hence, again by [23, Prop. 3.31],
there exists a matrix Fk|t+1 with non-negative entries, such
that

Fk|t+1Gk|t+1 = Gk+1|t, (25a)
Fk|t+1gk|t+1 ≤ gk+1|t. (25b)

For k = 0, . . . , N − 2, we define

λmk|t+1 := Hm>
k|t+1λ

m∗
k+1|t, (26a)

µmk|t+1 := F>k|t+1µ
m∗
k+1|t. (26b)

A suitable choice for λmN−1|t+1 and µmN−1|t+1 will be dis-
cussed below.

3) Recursive feasibility of (21g) for k = 0, . . . , N − 2:

G>k|t+1µ
m
k|t+1 +Am>k|t+1λ

m
k|t+1

(26a),(26b)
= G>k|t+1F

>
k|t+1︸ ︷︷ ︸

(25a)
= G>

k+1|t

µm∗k+1|t +Am>k|t+1H
m>
k|t+1︸ ︷︷ ︸

(23a)
= Am>

k+1|t

λm∗k+1|t

=G>k+1|tµ
m∗
k+1|t +Am>k+1|tλ

m∗
k+1|t

=0. (27)

4) Recursive feasibility of (21f) for k = 0, . . . , N − 2:

− g>k|t+1µ
m
k|t+1 − b

m>
k|t+1λ

m
k|t+1

(26a),(26b)
= − g>k|t+1F

>
k|t+1︸ ︷︷ ︸

(25b)
≤ g>

k+1|t

µm∗k+1|t − b
m>
k|t+1H

m>
k|t+1︸ ︷︷ ︸

(23b)
≤ bm

k+1|t

λm∗k+1|t

≥− g>k+1|tµ
m∗
k+1|t − b

m>
k+1|tλ

m∗
k+1|t > dmin.

5) Recursive feasibility of (21h) for k = 0, . . . , N − 2:

‖Am>k|t+1λ
m
k|t+1‖

(26a)
= ‖Am>k|t+1H

m>
k|t+1λ

m∗
k+1|t‖

(23a)
= ‖Am>k+1|tλ

m∗
k+1|t‖ ≤ 1

Finally, the non-negativity of Hm>
k|t+1 and F>k|t+1 imply that

the following holds

λmk|t+1
(26a)
= Hm>

k|t+1λ
m∗
k+1|t ≥ 0, µmk|t+1

(26b)
= F>k|t+1µ

m∗
k+1|t ≥ 0.

The existence of suitable λmN−1|t+1 and µmN−1|t+1 is guaran-
teed by Assumption 4, (18c) and (24d), knowing that (21d)
is satisfied for t+ 1. In particular, Proposition 1 implies that
λmN−1|t+1 and µmN−1|t+1 satisfy (21f), (21g) and (21h) for
k = N − 1.

IV. APPLICATION TO SAFE AUTONOMOUS DRIVING

This section illustrates an application of the proposed
framework combined with the nonlinear robust MPC ap-
proach proposed in [10]. We consider two cars, travelling
in the same direction. The car in front, considered as an
obstacle, travels at time t = 0s at a constant speed of 90km/h,
and its subject to a random bounded acceleration. The rear
car, the object, tries to drive with a constant velocity of
110km/h. The resulting MPC scheme generates a trajectory
which allows the controlled car to safely over-take the ob-
stacle. After this manoeuvre, the controlled car continues to
follow the reference trajectory with no visible tracking error.
A complete video of the example can be found at https:
//www.youtube.com/watch?v=YeftO1QYJk8.

Fig. 2: Description of the object and obstacles. The predicted
velocity of the uncertain object at time t is shown inside the
nominal object. The range of velocity that the obstacle can
have at time t + k is shown inside the uncertain obstacle,
while, for comparison, we also show the nominal obstacle,
representing where the obstacle would be if it travels with
a constant velocity of vobs,t. Note that the nominal object is
over-approximated by the uncertain object.

https://www.youtube.com/watch?v=YeftO1QYJk8
https://www.youtube.com/watch?v=YeftO1QYJk8
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Fig. 3: Over-taking manoeuvre as a result of safe obstacle avoidance. Each row shows on the left the closed-loop scenario at
the considered time t, in the middle the k = 10 steps ahead prediction, while on the right the k = 20 steps ahead prediction.

Fig. 4: 10 closed-loop over-taking manoeuvres. The velocity of the obstacle is subject to a random, but bounded, acceleration.
This generates different scenarios.

A. Considered model

We consider a nonlinear system representing an au-
tonomous car, defined as follows

ẋ =


ẋ1
ẋ2
ψ̇
v̇

β̇

 =


v · cos(ψ + β)
v · sin(ψ + β)
v

w1+lr
· sin(β)

u1 + w2|u1|
u2 + w3|u2|

 , (28)

where x1 ∈ [−∞,∞] and x2 ∈ [−∞,∞] represent the
coordinates of the center of mass of the car, ψ ∈ [−∞,∞]
indicates its rotation, v ∈ [14m/s, 36m/s] is the lon-
gitudinal velocity, and β ∈ [−37◦, 37◦] is the angle of
the current velocity of the center of mass with respect to
the longitudinal axis of the car, compare [24]. The inputs
u1 ∈ [−10m/s2, 1m/s2], u2 ∈ [−10◦/s, 10◦/s] control
the acceleration of the car and the velocity of the steering
angle, respectively. The parameter lr = 1.7m represents the
distance from the center of the mass of the car to the rear
axle. The uncertainty acting on the system are represented
by the values w1 ∈ [−0.05, 0.05], w2 ∈ [−0.1, 0.1] and
w3 ∈ [−0.1, 0.1]. The nominal prediction model is given
by (28), with w1 = w2 = w3 = 0. Similarly to the example
shown in [25], the system is incrementally stabilizable with

an incremental Lyapunov function Vδ(x, z)

Vδ(x, z) := ‖x− z‖2P (z), (29)

where P (z) := (X0 +
∑n
i=1 θi(z)Xi)

−1, based on a Quasi-
LPV parametrization. For the implementation we use a Euler
discretization with a sampling time of h = 100 ms, as done
in [24].

B. Object and obstacles description

Object: The physical space occupied by the controlled
car is defined as

E(xt) = R(ψt)B + p(xt), (30)

where R(ψt) ∈ R2×2 is the rotation matrix, p(x) :=
[x1 x2]>, and B is a hyper-box with a length of 4.5 m and
a width of 2.0 m.

Obstacle: Firstly, we consider the border of the street as
non-moving obstacles. In addition, we consider one moving
obstacle Ot, represented by a vehicle with the same shape
as the object, B. At time t = 0s, the obstacle travels at a
velocity of 90km/h, while for t ≥ 0 it is subject to a random
acceleration at, such that at ∈ [−10, 1]m/s2.

C. Predicted Object and Obstacles

1) Sets O·|t, (12): The predicted over-approximation of
the moving obstacle, Ok|t, satisfying Assumption 3, is done



by employing the bounds on the acceleration at that the
obstacle can be subject to, combined with a noisy knowledge
of the velocity of the obstacle at time t, with an error of
±5%, and by considering slight movements on the transverse
direction.

2) Tube X·|t: The predicted tube X·|t, defined as

Xk|t := {x̃ ∈ Rn|Vδ(x̃, xk|t) ≤ s2k|t},

is parametrized with an online computed scalar sk|t ≥ 0 and
the incremental Lyapunov function (29), compare [10]. The
tube propagation (Assumption 1) is given by

sk+1|t = ρsk|t + w̃δ(xk|t, uk|t, sk|t), (31)

where ρ ∈ (0, 1) is a contraction constant of the incremental
Lyapunov function, compare [10, Ass. 2]. The function w̃δ :
Rn+m+1 → R≥0 represents a scalar bound of the mismatch
between the real and the nominal system, [10, Ass. 5]. For
the considered example we have ρ = 0.3679, and

w̃δ(x, u, s) = cw1
v sin(|β|) + cw2

|u1|+ cw3
|u2|+ Lws

(32)

with cw1 = 0.0278, cw2 = 0.0197, cw3 = 0.0826 and Lw =
0.3384.

3) Sets Θ(X·|t), (17): We over-approximate the uncertain
prediction of the object by suitably scaling the shape of the
object B around its nominal prediction xk|t: Hence, Θ(Xk|t)
is defined as

Θ(Xk|t) := (1 + LBsk|t)B + p(xk|t),

where LB = 1.35.

D. MPC Optimization problem

We consider a nominal reference trajectory [xr,t, ur,t],
where xr,t = [0, 0, 0, 30.5m/s, 0]>, and ur,t = [0, 0]>

that the car is supposed to follow. We define the open-loop
cost JN (5) as

JN (X·|t, u·,t, t) =

N−1∑
k=0

‖xk|t − xr,t+k‖2Q + ‖uk|t − ur,t+k‖2R

where1 Q = diag(0, 1, 0, 100, 0) and R = diag(0.001, 100),
and N = 20. The optimization problem is an instantiation
of Problem (21) with the addition of (31) and (32) as con-
straints needed for the tube dynamics and for the uncertainty
propagation, based on [10].

Note that in the practical implementation we considered
an incremental Lyapunov function computed on a continuous
time system, and no terminal region. This simplifies the im-
plementation and is common practice in several applications.

1An appropriate tuning of the weighting matrices Q and R is fundamental
for having a desired, e.g. a smooth human-like, behaviour of the car.

E. Discussion

Here we explain and discuss the simulation example
shown in Fig. 3. We consider a prediction horizon of 2.0s.
At time t = 2.5s, in (a-1), the controlled car is ca. 20m
behind the the moving obstacle, while the 20 steps ahead
prediction (c-1) shows that the predicted car is over-taking
the over-approximation of the obstacle. We see that due to
the uncertainties present in the system and in the movement
of the obstacle, their predictions over-approximate their real
size. At time t = 6.0s, (a-2) the car gets closer to the
obstacle, while the object in the 20 steps ahead prediction
(c-2) is close to end the manoeuvre. At time t = 7.3s, in (c-
3), the 20 steps ahead predicted object safely returns to the
reference lane, however, this dynamic manoeuvre increases
the size of the tube sk|t, i.e., the uncertainty in the predicted
object. Lastly, at time t = 9.0s, in (a-4), the controlled object
safely concludes the manoeuvre, and continues travelling
at the desired velocity, similarly to its predictions in (b-
4) and (c-4). It is important to note that the reference
trajectory does not consider any over-taking manoeuvre, but
this naturally arises from the solution of the optimal control
problem (21) including the collision avoidance constraints
(21f)-(21h). Moreover, it is also important to see that during
the whole manoeuvre, the MPC scheme provides a safety
distance between the object and the moving obstacle, which
guarantees collision avoidance even in case of a sudden
brake from the moving obstacle. This is an important feature
that an autonomous car must have in order to ensure the
safety of the people and objects involved in the scenario.
The increased size of the object combined with the increased
size of the obstacle represent the key for this feature and are
instrumental to ensure safe collision avoidance. This would
not necessarily be guaranteed in other standard collision
avoidance approaches which do not explicitly consider uncer-
tainty, such as, e.g., [21]. The algorithm explicitly employs
the uncertainty in the obstacle movements, and captures the
effect of limit dynamics on the uncertainty of the object
movements. Such effects would be hard, if at all possible,
to replicate with (a time-varying) dmin in a nominal MPC
formulation. This represents a significant and fundamental
improvement toward the application of collision avoidance
approaches in real scenarios.

In Fig. 4 we show 10 different over-taking manoeuvres,
where we see that they all follow a similar shape, but are
translated according to the speed of the obstacle, which is
subject to a random acceleration.

V. CONCLUSION

We have presented a robust collision avoidance approach
based on a general nonlinear robust MPC framework. The
scheme is applicable to uncertain nonlinear systems with
uncertain obstacle movements. We have demonstrated the
applicability of the proposed framework with a realistic
example, showing an autonomous car during a safe over-
taking manoeuvre.



REFERENCES

[1] J. Schulman, Y. Duan, J. Ho, A. Lee, I. Awwal, H. Bradlow, J. Pan,
S. Patil, K. Goldberg, and P. Abbeel, “Motion planning with sequential
convex optimization and convex collision checking,” The International
Journal of Robotics Research, vol. 33, no. 9, pp. 1251–1270, 2014.

[2] A. Liniger, A. Domahidi, and M. Morari, “Optimization-based au-
tonomous racing of 1: 43 scale RC cars,” Optimal Control Applications
and Methods, vol. 36, no. 5, pp. 628–647, 2015.

[3] J. B. Rawlings and D. Q. Mayne, Model predictive control: Theory
and design. Nob Hill Pub., 2009.

[4] B. Kouvaritakis and M. Cannon, Model predictive control: Classical,
Robust and Stochastic. Springer, 2016.
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