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Abstract— In this work, the controller design for a Net-
worked Control System (NCS) with random time delays is
considered. Therefore, the NCS is reformulated as Jump Linear
System (JLS). Then a standard controller design method, which
stabilizes the JLS in the second moment sense, is extended
such that all sub-systems/sub-matrices of the JLS have some
common eigenmodes. For the NCS with random time delays
this translates to a reduction of the negative effects caused by
the delay. We will also show, that a controller, which gives n

common eigenmodes, where n is the dimension of the system,
contains a predictor term.

Moreover, we propose a new controller type which gives one
common eigenmode and can be easily realized if there is delay
between the controller and the actuator.
Index Terms— NCS, JLS, random delay, common eigenmode

I. INTRODUCTION AND MOTIVATION

Since the development of the first packet based networks,
they continuously became cheaper, faster and more and
more reliable. Hence, control engineers like to close their
loops via such networks, which is then called a Networked
Control System (NCS). Unfortunately, packet based networks
have two weaknesses: Packet delay and loss. Thus, much
research is necessary to overcome these weaknesses, see e.g.
the special issues and sections on NCS in [1]–[3] and the
references therein.
One approach to analyze and stabilize a NCS is to refor-

mulate it as Jump Linear System (JLS), see [4]–[8]. This
work also builds up on this idea. In contrast to previous
works, we will not only stabilize the system but present an
extension, which reduces the negative effects caused by a
random delay.
In this work, a discrete-time system with a random delay

d ∈ D := {0, 1, . . . , d̄} is considered:

x(k + 1) = Ax(k) + bu(k − d), x ∈ R
n, u ∈ R. (1)

Using a delay dependent state feedback controller u = kT
d x,

kd ∈ R
n, the closed loop system becomes:

x(k + 1) = Ax(k) + bkT
d x(k − d). (2)

If the delay d can be modeled by an independent and
identically distributed (iid) random process or a Markov
chain, then the closed loop system (2) can be analyzed
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Fig. 1. Some simulations of a JLS.

by reformulating it as JLS. Therefore, the augmented state
vector z(k) ∈ R

n·(d̄+1) is defined as:

z(k) :=
[
x(k)T x(k − 1)T · · · x(k − d̄)T

]T
. (3)

Instead of (2) we now write:

z(k + 1) = Adz(k), (4)

where Ad is defined as follows:

Ad =

⎡
⎢⎢⎢⎢⎢⎣

A ← bkT
d →

I 0 . . . 0 0
0 I . . . 0 0
...

...
. . .

...
...

0 0 . . . I 0

⎤
⎥⎥⎥⎥⎥⎦

. (5)

Note, that the position of the matrix bkT
d is determined by

the delay d.
Often, the controller kT

d is designed such that the second
moment decay rate of the JLS (4) is minimized, see [4]–
[8]. In this work, we are more interested in reducing the
negative effects caused by the delay than minimizing the
second moment decay rate. This interest is motivated by an
observation during our previous work.
In [7] and [8], we tested different algorithms, which

minimize the second moment decay rate. In order to get
a realistic picture of the resulting closed loop system, we
simulated each system 100 times and plotted ‖x‖ on a
logarithmic scale. Figure 1(a), which is taken from [8], shows
such simulations. Note, that these simulations look more like
the simulations of an ordinary linear system and not like the
ones we expected from a jump linear system.
We discovered a similar effect for the mode-independent

non-switching controller in the example of Section 5.1 of [5],
after simulating the closed loop system 100 times and plot-
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TABLE I
THE EIGENMODE, WHICH IS ALMOST IDENTICAL FOR THE THREE MATRICES.

eigenvalue eigenvector
A0 0.9559 [0.5023, -0.2265, 0.0106, -0.0048, 0.5255, -0.2369, 0.0111, -0.0050, 0.5497, -0.2479, 0.0116, -0.0053]
A1 0.9549 [0.4997, -0.2307, 0.0110, -0.0051, 0.5233, -0.2416, 0.0115, -0.0054, 0.5480, -0.2530, 0.0121, -0.0056]
A2 0.9537 [0.4967, -0.2353, 0.0116, -0.0055, 0.5208, -0.2468, 0.0121, -0.0058, 0.5461, -0.2587, 0.0127, -0.0061]

ting ‖x‖ on a logarithmic scale. These simulations are shown
in Figure 1(b). Although, there is some chaotic behavior,
there are also some straight lines, which would correspond
to a negative exponential decay, without any jumping.
First, we thought this is due to a bug in our simulations,

or some strange numerical behavior. Fortunately this is not
the case. We realized that all the closed loop matrices Ad

have one eigenvalue, which is almost identical. Moreover, the
corresponding eigenvectors are also almost identical. Table I
shows the numerical values of this common eigenmode for
the cited example in [5] and we see that they are amazingly
similar.
Now, the straight lines can be explained as follows: First,

suppose that there is one common eigenvalue λ with corre-
sponding eigenvector r, i.e Air = λr, ∀i ∈ D. If the system
is started on this eigenvector, i.e. z(k) = r then it stays there
because z(k+1) = Adz(k) = Adr = λr = λz(k), ∀d ∈ D.
Note, that we have z(k+1) = λz(k) here, which corresponds
to an ordinary linear system. For our NCS (1) this translates
to a non delayed system.
Similar thoughts hold if there is more than one com-

mon eigenmode. In this case, the system can be divided
in two parts: one part, which will be called the common
subspace A ⊂ R

ν with the common eigenmodes and the
residual part, which will be called B := R

ν \A. Again, if the
system is started in the common subspace, i.e. z(k) ∈ A, then
it stays there, i.e. z(k+1) ∈ A. Moreover, the system behaves
like an ordinary linear system. Finally, suppose the system
is started somewhere else. Then there will be some jumping
due to the sub-dynamics in B. However, if the dynamics in
B are faster than the ones in A, then the dynamics in the
common subspace A will dominate the entire dynamics. The
jumping disappears after some time and the system behaves
like an ordinary linear system.
Motivated by this observation, we will develop a design

procedure, where this is an explicit design goal. We show,
how to design a delay dependent controller kT

d such that
all Ai have one common eigenmode. Moreover, we will see
that the proposed method is not restricted to one common
eigenmode but is also able to design a controller kT

d such
that there are up to n common eigenmodes. Interestingly, we
will see that this controller predicts future states.
The remainder of this work is organized as follows. In

Sec. II, we give the main theorems to design a controller
which gives common eigenmodes. Then, in Sec. III we
propose a new controller type, which also gives one common
eigenmode and is furthermore easy to realize if there is delay
between the controller and the actuator. In Sec. IV, we show

that the proposed method is correlated to the usage of a
predictor. Finally, we visualize the benefits of the proposed
method by an example in Sec. V and conclude the work in
Sec. VI.

II. MAIN PART

In order to design a controller which gives common
eigenmodes, we first give two lemmas, which simplify the
eigenvalue equation of (5). Then, we derive Theorem 1 which
gives a constraint for the controller kT

d guaranteeing common
eigenvalues. Finally, Theorem 2 shows how to get common
eigenvectors. We will give the proofs in the appendix to
improve readability.
The following lemma shows that the dimension of the

eigenvalue equation of (5) can be reduced:
Lemma 1: The eigenvalue equation of (5) can be written

as:

det(λIn·(d̄+1) −Ai)

= det(λd̄+1In − λd̄A− λd̄−ibkT
i ), i ∈ D, (6)

where In ∈ R
n×n is the identity matrix.

Before we give the next lemma, we first have to clarify
the notation, which is necessary to access the individual
elements of the different controllers kT

i . We write ki,j for
the j-th element of the i-th controller. Moreover, to improve
readability and simplify the notation, we start to count these
elements from 0.
The following lemma further simplifies the eigenvalue

equation of (5):
Lemma 2: Suppose the system is given in controllable

normal form. Then, we can write the right hand side of
Eq. (6) as:

det(λd̄+1In − λd̄A− λd̄−ibkT
i )

= λ(n−1)d̄
(
λn+i +

n−1∑
j=0

λj+iaj −
n−1∑
j=0

λjki,j

)
, i ∈ D.

To guarantee that all Ai have one common eigenvalue λ,
we require det(λI −Ai) = 0, ∀i ∈ D. Using Lemma 2, we
get the following Theorem:
Theorem 1: Suppose the system is given in controllable

normal form. Then all Ai have one common eigenvalue λ if
the following equation holds for all i ∈ D:

λn+i +

n−1∑
j=0

λj+iaj −

n−1∑
j=0

λjki,j = 0. (7)

In order to use this equality constraint within an LMI
solver, we write Eq. (7) in the following vector notation:
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[
ki,0 . . . ki,n−1

]
︸ ︷︷ ︸

kT

i

⎡
⎢⎢⎢⎣

1
λ
...

λn−1

⎤
⎥⎥⎥⎦

︸ ︷︷ ︸
λ̃

= λn+i +

n−1∑
j=0

λj+iaj

︸ ︷︷ ︸
ci

, ∀i ∈ D.

Note that some LMI solver can not handle equality
constraints directly. In this case, it is possible to use
kT

i λ̃ + ε > ci > kT
i λ̃− ε as constraints. In doing so, the

resulting eigenvalues will not be exactly identical but by
choosing a small ε, they will be very close.
Note, that Eq. (7) is not restricted to one common eigen-

value. If we want to have m common eigenvalues λ1, . . . ,
λm, then we can write:

[
ki,0 . . . ki,n−1

]
︸ ︷︷ ︸

kT

i

⎡
⎢⎢⎢⎣

1 . . . 1
λ1 . . . λm

... . . .
...

λn−1
1 . . . λn−1

m

⎤
⎥⎥⎥⎦

︸ ︷︷ ︸
Λ̃

= cT
i , ∀i ∈ D,

where the elements of cT
i ∈ R

m are:
ci,l := λn+i

l +
∑n−1

j=0 λ
j+i
l aj .

Corollary 1: Suppose, we want n common eigenvalues,
i.e. m = n, which are chosen such that Λ̃ has full rank.
Then kT

i can be calculate via: kT
i = cT

i Λ̃−1. In doing so,
all the coefficients of kT

d are determined and hence also the
second moment decay rate.
Remark 1: Obviously, we have to choose λi < 1, i =

1, . . . , n to get a stabilizing controller. Unfortunately, we
nevertheless have no clue about the resulting second moment
decay rate in advance.
Now, we know how to design a controller such that there

is one or even more common eigenvalue. At first glance,
asking for common eigenvectors might be a very difficult
or even impossible task. Fortunately the following theorem
states that this is for free:
Theorem 2: Suppose, there is a controller such that

Eq. (7) of Theorem 1 holds. Then the corresponding eigen-
vectors are also identical.

III. A NEW CONTROLLER TYPE
In general, there are two controller types: The delay-

dependent controller kT
d , where there is no correlation be-

tween the different control vectors kT
i , i ∈ D and the delay-

independent controller kT , where the control vector does not
depend on the current delay.
Obviously, the delay-dependent controller is more com-

plex but will often give a better performance. Unfortunately,
there is an implementation problem if there is delay between
the controller and the actuator. The controller can not know
the delay d which will occur while sending the packet to the
actuator. Hence the controller can not decide which control
vector kT

i to choose.
In order to combine the pros of both types, we propose

a third kind of controller: kT
d = λdkT . The calculation of

this control law can be shared between the controller and
the actuator. The controller calculates u = kTx, which is a
delay-independent control law and sends it to the actuator.
The actuator, which is aware of the occurred delay d,
calculates the λd part.
This controller type not only simplifies the implementation

problem but also gives a common eigenmode:
Theorem 3: Suppose, kT

d = λdkT is used as control law,
where λ is an eigenvalue of the non delayed closed loop.
Then λ is also an eigenvalue of all Ai, i.e. det(λI −Ai) =
0, ∀i ∈ D.

Proof: This can be best seen by using kT
i = λikT in

Eq. (6).
Note, that this approach can also be used to treat the loss

of packets. In this case, the packet loss is modeled as delay:
If a packet is lost, then the previous one is still there and is
obviously delayed. Thus, the actuator can reuse (and modify)
the previous packet as follows: u(k) = λu(k − 1).

IV. INTERPRETATION

It is easy to see, that the λd term of the new controller
type can be interpreted as a predictor. We can also interpret
the case of n common eigenmodes by a prediction of the
closed loop system:
For d = 0, i.e. the non delayed case, we use u(k) =

bkT
0 x(k), where kT

0 is found by any standard method, e.g.
pole placement or LQR. For an arbitrary delay d ≥ 1, we
can predict the current state x(k) of the closed loop from the
delayed state x(k−d) as follows: x(k) = (A+bkT

0 )dx(k−d)
and thus get:

u(k) = bkT
0 (A + bkT

0 )d

︸ ︷︷ ︸
=:kT

d

x(k − d).

Hence, we have

kT
d := kT

0 (A + bkT
0 )d. (8)

Theorem 4: The delay dependent controller kT
d given in

Corollary 1 and the one given by Eq. (8) are identical.
Proof: First, note that cT

i = cT
0 diag(λ1, . . . , λn)i, i =

1, . . . , d̄. Thus, we can write kT
i Λ̃ = cT

0 diag(λ1, . . . , λn)i.
For i = 0 this is kT

0 Λ̃ = cT
0 and it follows that kT

i =
kT

0 Λ̃diag(λ1, . . . , λn)iΛ̃−1. In Corollary 1, we assumed that
the system is given in controllable normal form. Note that Λ̃
is the matrix of the corresponding right eigenvectors of the
closed loop and thus we have:
kT

i = kT
0 Λ̃diag(λ1, . . . , λn)iΛ̃−1 = kT

0 (A + bkT
0 )i if the

system is given in controllable normal form.
Note, that this work was motivated by the observation,

that minimizing the second moment decay rate often results
in common eigenmodes. We have shown that getting n com-
mon eigenmodes is identical to the usage of a predictor.
Interestingly, this nicely fits to [9], where the authors state
that every stabilizing dead-time controller has an observer-
predictor-based structure.
It is well known, that a predictor is very sensitive to model

uncertainties. Thus, designing the controller such that there
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are n common eigenmodes might not be the best choice. It
might be better to get only one or two common eigenmodes
to compensate the negative effects of the delay, and use the
residual degree of freedom for robustness issues.
Note, that the common eigenmodes are independent of the

delay probabilities. Hence, uncertainties in the delay process
do not effect the proposed method.

V. EXAMPLE
In this section, we use an example to visualize the ben-

efits of the proposed method. Therefore, we design three
controllers with common eigenmodes and compare them to
another controller which just stabilizes the system in the
second moment sense. We use the inverted pendulum on a
cart example given in [5] and [6]: x(k + 1) = Ax(k) +
bu(k − d), where the values of A and b are:

A =

⎡
⎢⎢⎣

1 0.1 −0.0166 −0.0005
0 1 −0.3374 −0.0166
0 0 1.0996 0.1033
0 0 2.0247 1.0996

⎤
⎥⎥⎦ , b =

⎡
⎢⎢⎣

0.0045
0.0896
−0.0068
−0.1377

⎤
⎥⎥⎦ .

For simplicity, we model the random delay by an
iid random process with the probability vector pT =[
0.3 0.6 0.1

]
.

Our controller design algorithm is based on the Cone Com-
plementary Linearization (CCL) [10], as suggested in [6],
which we already used in [8]. In order to get common
eigenvalues, we added the constraints discussed in Sec. II.
For all examples, we set ε = 10−9.
After the controller design, we simulated each closed loop

system with an initial deviation of the angle, i.e. x(0) =[
0 0.1 0 0

]T and plotted ‖x‖ on a logarithmic scale.
Due to the randomness of the time delay, one simulation
run is definitively not enough to get a realistic picture of its
behavior. Hence, we simulated each closed loop system 100
times.
The following controller is used for comparison:

kT
0 =

[
0.134686 1.30997 21.4185 5.79433

]
,

kT
1 =

[
0.64929 0.947411 23.3122 6.70352

]
,

kT
2 =

[
0.105784 −0.335455 11.0665 4.57635

]
.

This controller gives a second moment decay rate of 0.9038
but no common eigenmodes. Figure 2(a) shows the 100
simulation runs of the closed loop with this controller.
Although the system decays to the origin, there is some chaos
and inconsistency. Hence, we are not very satisfied with this
result.
Now, we present some controllers with the feature pre-

sented in this work. We start with a controller, which gives
two common eigenmodes, with eigenvalues at 0.9 and 0.89:

kT
0 =

[
1.40881 2.82344 32.6137 6.27701

]
,

kT
1 =

[
0.284209 0.716302 21.2214 5.19977

]
,

kT
2 =

[
−0.881911 −1.59426 7.09703 2.75821

]
.

The following table lists the four most important eigenvalues
of the resulting closed loop matrices:

A0 0.890001 0.899998 0.791201±0.355636j
A1 0.890054 0.899961 0.79658 ±0.380964j
A2 0.890002 0.899998 0.789565±0.361021j
In addition to the desired eigenvalues at 0.9 and 0.89,

there is a pair of conjugate complex eigenvalues (≈ 0.79±
0.36j), which are almost identical. As already noted in the
introduction this pair of complex poles appeared without our
intention just by minimizing the second moment decay rate.
Furthermore, A1 has an additional eigenvalue at 0.816025

and A2 has two additional eigenvalues at -0.560614 and
1.39068. The second moment decay rate is 0.81 and hence
the entire system is stable.
Figure 2(b) shows the 100 simulation runs of the corre-

sponding closed loop system. Compared with the previous
figure, we see a much smoother and consistent decay. The
simulations look almost like the simulations of an usual
linear system. Nevertheless, at the very beginning, there is
some jumping which is also the reason, why there is not only
one line. Note, that the oscillation at the beginning is due to
the almost identical conjugate complex eigenvalues.
As highlighted in Corollary 1, it is also possible to design

a controller kT
d such that there are n common eigenmodes.

For the next controller, we set them to 0.9, 0.89, 0.88 and
0.87:

kT
0 =

[
0.129222 0.434337 20.182703 4.077384

]
,

kT
1 =

[
0.044039 0.160944 16.995251 3.873278

]
,

kT
2 =

[
−0.037927 −0.110152 13.673295 3.425691

]
.

In addition to the desired eigenvalues, A1 has one more
eigenvalue at 0.659199 and A2 has two more eigenvalues at
-0.532337 and 1.19154. The second moment decay rate is
0.8098 and hence the entire system is stable.
Figure 2(c) shows the 100 simulation runs of the corre-

sponding closed loop system. We also simulated the system
without any delay, using the controller kT

0 , which corre-
sponds to ordinary pole placement. This simulation is shown
as a bold red line in Figure 2(c) and we see that the effect
of the random delay sequence is almost eliminated here.
Finally, we give an example for the new controller type

kT
d = λdkT , introduced in Sec. III. Therefore, we set the
desired eigenvalue λ to 0.94 and got the following controller:

kT =
[
0.127998 0.443548 20.7205 4.9462

]
.

Using this controller and checking the eigenvalues, we see
that A0 has one at 0.940001,A1 one at 0.940004 and A2 has
one at 0.939992. Moreover, the second moment decay rate is
0.8836. Figure 2(d) shows the 100 simulation runs with this
controller. These simulations do not look as good as the two
previous ones. However, keeping the reduced complexity in
mind and compared with Figure 2(a) they look very good.

VI. CONCLUSION

In this work, we proposed a method to design a controller
for a NCS such that the closed loop is not only second
moment stable, but also has one (or even more) common
eigenmode. We showed the benefits of this approach by an
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(c) The controller which gives four common eigenmodes.
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= λdkT such that 0.94 is a common eigenvalue.

Fig. 2. The simulation runs of the closed loop system with the different controllers.

example. In order to solve the controller design problem,
we had to add equality constraints to the CCL algorithm,
which we formerly used to minimize the second moment
decay rate. Other algorithms, which synthesize controllers
for a NCS with delay might also be modified such that there
are common eigenmodes.
As noted in the introduction, we observed this effect

while minimizing the second moment decay rate of JLS (4).
Hence, the interesting question is whether or not common
eigenmodes are necessary and/or sufficient for a minimal
second moment decay rate.
We have seen, that getting n common eigenmodes is

identical to the usage of a predictor. Finding a trade-off
between the sensitivity to model uncertainties, an acceptable
second moment decay rate and the common eigenmodes
feature will be part of our ongoing work.
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APPENDIX I
PROOF OF LEMMA 1

In order to simplify det(λIn·(d̄+1) − Ai), we first write
(λIn·(d̄+1) −Ai) in detail. It is:

⎡
⎢⎢⎢⎢⎢⎢⎣

λI −A ← −bkT
i →

−I λI . . . 0 0

0 −I
. . .

... 0
...

...
. . . λI

...
0 0 . . . −I λI

⎤
⎥⎥⎥⎥⎥⎥⎦

.

Counting from 0, we multiply the l-th block column with
λd̄−l, to get:

⎡
⎢⎢⎢⎢⎢⎢⎣

λd̄+1I − λd̄A ← −λd̄−ibkT
i →

−λd̄I λd̄I . . . 0 0

0 −λd̄−1I
. . .

... 0
...

...
. . . λ2I

...
0 0 . . . −λI λI

⎤
⎥⎥⎥⎥⎥⎥⎦

.
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Ãn =

⎡
⎢⎢⎢⎢⎢⎣

λd̄+1 −λd̄ 0 . . . 0

0 λd̄+1 −λd̄ . . . 0
...

...
. . . . . .

...
0 0 . . . λd̄+1 −λd̄

a0λ
d̄ − ki0λ

d̄−i a1λ
d̄ − ki1λ

d̄−i . . . . . . an−1λ
d̄ − kin−1λ

d̄−i + λd̄+1

⎤
⎥⎥⎥⎥⎥⎦

(9)

Remember, that if a matrix B is derived from a matrix A by
multiplying one column of A with α ∈ R, then det(B) =
α det(A) (see e.g. [11], Proposition 2.7.2). We will take care
of this at the end of this proof.
Now, we want to eliminate the elements in the lower left

part of this matrix. Therefore, we first add the last block
column to the last but one, then the last but one to the last
but second and so on. Remember, that adding one column
to another does not change the determinant of the matrix.
Finally, we add the second block column to the first one and
end up with:

⎡
⎢⎢⎢⎢⎢⎢⎣

Ξ −λd̄−ibkT
i → . . .

0 λd̄I . . . 0 0

0 0
. . .

... 0
...

...
. . . λ2I

...
0 0 . . . 0 λI

⎤
⎥⎥⎥⎥⎥⎥⎦

,

where Ξ = λd̄+1I − λd̄A − λd̄−ibkT
i . Note, that the

−λd̄−ibkT
i entry is in the first i columns due to this

summations.
Calculating the determinant of the previous matrix and

keeping the multiplications of the l-th block column with
λd̄−l in mind, we obtain Lemma 1.

APPENDIX II
PROOF OF LEMMA 2

Here, we further simplify det(λd̄+1In−λd̄A−bkT
i λd̄−i),

assuming that the system is given in controllable normal
form. Therefore, we first introduce the shortcut: Ãn :=
(λd̄+1In − λd̄A − bkT

i λd̄−i), where the index n denotes
that A ∈ R

n×n. Eq. (9) at the top of this page, shows Ãn in
detail.
In order to calculate det(Ãn), we expand the determinant

along the first column to get:

λd̄+1 det Ã(n−1) + λ(n−1)d̄(a0λ
d̄ − ki0λ

d̄−i).

Following this recursion, we obtain Lemma 2.

APPENDIX III
PROOF OF THEOREM 2

Here, we have to find a vector
[
rT
0 rT

1 . . . rT
d̄

]T such
that the following equation holds for all i ∈ D.⎡

⎢⎢⎢⎢⎢⎣

A ← bkT
i →

I 0 . . . 0 0
0 I . . . 0 0
...

...
. . .

...
...

0 0 . . . I 0

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

r0

r1

r2

...
rd̄

⎤
⎥⎥⎥⎥⎥⎦

= λ

⎡
⎢⎢⎢⎢⎢⎣

r0

r1

r2

...
rd̄

⎤
⎥⎥⎥⎥⎥⎦

.

From the first block row, we obtain:

Ar0 + bkT
i ri = λr0. (10)

The residual rows are:

rj = λrj+1, j = 0, . . . , d̄− 1. (11)

⇒ r0 = λiri. (12)

Using Eq. (12) in Eq. (10) gives us:

Aλiri + bkT
i ri = λi+1ri, (13)

which holds due to the assumption and Lemma 1.
Remember the definition of the augmented state vec-

tor z(k) :=
[
x(k)T x(k − 1)T · · · x(k − d̄)T

]T . If
z(k) is a common eigenvector of the matrices Ai, then
Eq. (11) can be interpreted as x(k) = λx(k−1), independent
of the occurred delay. This is exactly what we wanted.
Note that similar thoughts can be used to show that the

left eigenvectors are also identical.
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