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Recently, while studying the dynamics of power electronic DC/AC converters we have demon-
strated that the behavior of these systems can be modeled by piecewise-smooth maps which
belong to a specific class of models not investigated before. The characteristic feature of these
maps is the presence of a very high number of switching manifolds (border points in 1D). Ob-
viously, the multitude of control strategies applied in the modern power electronics leads to
different maps belonging to this class of models. However, in this paper we show that several
of the models can be studied using the same piecewise-linear approximation, so that the bifur-
cation phenomena which can be observed in this model are generic for many models. Based on
the results obtained before for piecewise-smooth models with different kinds of nonlinearities
resulting from the corresponding control strategies, in the present paper we discuss the generic
bifurcation patterns in the underlying piecewise-linear map.
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1. Introduction

Many problems in engineering and applied science
lead us to consider piecewise-smooth maps. Ex-
amples of such systems include relay and pulse-
width modulated control systems, power electron-
ics systems [Banerjee & Verghese, 2001; Zhusub-
aliyev & Mosekilde, 2003; di Bernardo et al.,
2008b], mechanical systems with dry friction or im-
pacts [Armstrong-Hélouvry et al., 1994; Brogliato,
1999; Leine & Nijmeijer, 2013], as well as any kind
of systems involving thresholds, constrains and de-
cision making processes in economics and social sci-

ences [Puu & Sushko, 2006; Mosekilde & Laugesen,
2007; Bischi et al., 2010].

In such systems, as a parameter is varied, an invari-
ant set such as, for example, a fixed point or a cycle,
may collide with a switching set where the equa-
tions governing the dynamics change. When such a
collision causes a qualitative change in the dynam-
ics, a special dynamic phenomenon occurs, referred
to as a border-collision bifurcation. An overview of
border collision related phenomena can be found
in [di Bernardo et al., 2008a,b].

Recently, we have studied a variety of problems as-
sociated with border-collision phenomena in power
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electronic DC/AC converters (inverters) [Avrutin
et al., 2015, 2016, 2017b,a]. Converters of this type
are applied to provide AC voltage or current of
a specified amplitude and frequency from a DC
source. By virtue of their high efficiency and rela-
tively low costs, inverters have achieved widespread
application in modern power engineering. Standard
examples of devices that include inverters are un-
interruptible power supplies (UPS), active filters,
flexible AC transmission systems (FACTS), volt-
age compensators, and so on [Rashid & Luo, 2006].
Moreover, in the last few years the interest in in-
verters has been continuously increasing because of
their use in applications related to renewable en-
ergy sources, such as solar panel systems and wind
turbines [Singh, 2013; Hassaine et al., 2014; Jain
et al., 2015; Alexander, 2016; Sayigh, 2016], as well
as in the power supply systems of electric and hy-
brid cars [Poullikkas, 2015].

The dynamics of an inverter system is governed by
two external signals: a low frequency reference sig-
nal that defines the waveform of the desired out-
put voltage or current, and a high frequency, pulse-
modulated switching signal. The ratio m between
these frequencies is referred to as the frequency mod-
ulation ratio. Typically, it takes the values of the
magnitude between 102 and 103. It has been shown
in our recent publications that the presence of two
vastly different frequencies causes several unusual
phenomena to occur, such as transitions to chaos
via irregular cascades of border collisions [Avrutin
et al., 2015], structures in parameter space formed
by persistence border collisions inside the domain
of regular dynamics [Avrutin et al., 2016], and a
global alignment of the boundaries associated with
smooth bifurcations [Avrutin et al., 2017b].

The mechanisms leading to these phenomena are
related to specific properties of the underlying mod-
els. Indeed, in the cited works we presented a
generic two-step approach for modeling of inverter
systems. The first step of this approach involves the
calculation of a primary stroboscopic mapping with
the sampling step determined by the high switch-
ing frequency. Because of the presence of the low
frequency signal, the primary stroboscopic map is
non-autonomous. Thereafter, the second step of the
modeling approach consists in the calculation of a
secondary stroboscopic mapping with the sampling
step determined by the low frequency. Provided
that the frequency modulation ratio is an integer
number, the secondary stroboscopic map is given by
the iterate of the primary stroboscopic map which

corresponds to one period of the low frequency sig-
nal (i.e., the m-th iterate). By construction (as the
sampling step is chosen to be identical with the
period of the low frequency signal), the secondary
stroboscopic map is autonomous.

Due to a high value of m, the resulting model (the
secondary stroboscopic map) belongs to a specific
class of piecewise-smooth maps barely investigated
before. The characteristic feature of maps belong-
ing to this class is an extremely high number of the
switching manifolds separating the branches of the
function which governs the dynamics. This follows
immediately from the fact that for any piecewise-
smooth map the number of branches of the m-th
iterate grows exponentially with m. At present, the
dynamics of such maps is not yet fully covered by
the existing theory.

Remarkably, the models of the inverters considered
in the cited works show certain similarities. Indeed,
the primary stroboscopic maps of these systems
are defined by two linear branches related to the
saturation of the duty cycle of the circuit, and a
nonlinear branch corresponding to the normal op-
erational regime. The specific kind of nonlinearity
of this branch is determined by the applied con-
trol strategy. However, due to the high value of m,
the influence of this nonlinearity on the branches
of the secondary stroboscopic mapping turns out
to be relatively weak. Therefore, it is quite nat-
ural to consider a piecewise-linear approximation
of the primary stroboscopic map. By construction,
this approximation is common for a broad class of
inverter systems which have similar structural prin-
ciples and differ in the applied control strategies
only. As shown below, this approximation can be
seen as a generic template for many inverter systems
such as, for instance, H-bridge inverters with differ-
ent types of bipolar and unipolar sinusoidal pulse-
width modulated (PWM) control. Accordingly, it
appears to be promising first to study the bifurca-
tion phenomena in the piecewise-linear model, and
then to consider the corresponding phenomena in
the applied systems modeled by maps with nonlin-
ear branches as a kind of deformation of these —
more generic — structures. The advantages of this
mode of operation are clearly in the commonal-
ity of the piecewise-linear map and the possibility
to obtain for this map more analytic results than
for maps with nonlinear branches. Still, the ques-
tion arises how well the piecewise-linear model ap-
proximates the dynamics of maps with nonlinear
branches.
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As a consequence, the goals of this paper are
twofold. On one hand, we aim to determine which
bifurcation phenomena already observed in other
piecewise-smooth models composed by nonlinear
functions exist in the piecewise-linear approxima-
tion. Such phenomena can be seen as generic in
the sense that similar effects will be present in all
models which can be sufficiently well approximated
by the piecewise-linear model. On the other hand,
we are interested in the question which phenomena
are specific for the piecewise-linear map and up to
which extent the linearity of the function provides
the possibility for analytic results which cannot be
obtained in a closed form for nonlinear functions.
The paper is organized as follows. First, in Sec. 2,
we describe three different inverter systems which
can be modeled by piecewise-smooth maps with a
nonlinear branch. Eventually, we introduce a sin-
gle piecewise-linear map which represents an ap-
proximation for all three models considered before.
Thereafter, in Sec. 3, we discuss the bifurcation
structures observed in a 2D parameter plane of
this piecewise-linear map, focusing on two types of
events most characteristic for such maps, namely
border collisions, which occur when a fixed point or
cycle collides with a boundary between partitions in
the state space (Sec. 3.2), and degenerate bifurca-
tions, occurring when a fixed point or cycle changes
its stability (Sec. 3.3). Finally, in Sec. 4 we com-
pare the results obtained for the piecewise-linear
approximation with the results already knows for
underlying maps with nonlinear branches, identify-
ing bifurcations patters generic for the considered
class of inverter systems.

2. Description of the system

Among a large variety of industrially applied in-
verter systems, we consider two common types of
these systems, namely single-phase H-bridge and
multi-level inverters. These two types of systems
cover a broad spectrum of applications ranging from
low power devices for chargers in household equip-
ment to megawatt applications used in the main
power supply lines. In the meantime, several modu-
lation techniques have been developed for control of
inverter systems. Wide-spread among them are the
bipolar and unipolar sinusoidal pulse width modu-
lation (SPWM) techniques.

Below we consider three typical models of inverters
belonging to these types (a bipolar and an unipolar
single-level H-bridge inverters as well as a multi-

level unipolar H-bridge inverter) and demonstrate
that — despite the differences in the underlying cir-
cuits — the similarities in their behavior can be ex-
plained by the same piecewise-linear approximation
these models lead to.

2.1.

The first model considered below describes the be-
havior of the bipolar H-bridge inverter [Espinoza,
2011] shown schematically in Fig. 1(a). The four
switches S;, j = 1,...,4, of the bridge structure
operate in pairs so that S7 and S4 are closed when
So and S3 are open, and wvice versa. In the first
case, a positive voltage Fy is applied to the load,
while in the second case this voltage is reversed.
The switches are controlled by the sinusoidal PWM
modulator through a feedback mechanism as illus-
trated in Fig. 1(b).

In order to generate the switching signals to the
pairs of switches Sy, S4 and So, S3, the corrector
amplifier DA, determines the error signal {(t) =
a(Vier(t) — Ves(t)) where Vier(t) = Vi -cos(2t/T) is
the reference sinusoidal voltage, and Vs(t) = Bi(t)
is the output voltage of the current sensor C'S, and
i(t) is the current of the RL (resistive-inductive)
load. Here, « is referred to as the corrector gain
factor and 3 is the current sensor sensitivity; while
Vi and T' = ma are the amplitude and the period of
the reference signal, respectively. The value a is one
ramp period (the period of the clock signal Vgjoex)
and m is the frequency modulation ratio, i.e., the
number of clock cycles during the period T of the
reference signal. In the following we assume m to be
an integer number. As shown in our previous publi-
cations [Avrutin et al., 2015, 2017b], the dynamics
of the inverter depends on whether m is even or
odd.

According to the pulse width modulation approach
of the first kind (PWM-1), the sample-and-hold unit
S/H reads the error signal £(t) at every clock time
t =ka, k=0,1,2..., and maintains it for the fol-
lowing switching period [ka, (k+1)a) (see Fig. 1(b)).
This determines the control signal Veon(t). In or-
der to generate the switching signals to the pairs of
switches S, S4, and Sy, S3, the comparator DA
compares the signal Vo, (t) with a periodic ramp
function Viamp(t). If long as Veon(t) > Viamp(t),
switches S7, S4 are open and S, S3 are closed.
Otherwise the switches S7, S4 are closed and Ss,
S3 open.

The ramp function Viamp(t) varies in synchrony

Bipolar H-bridge inverter
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with the clock signal in the range between —Vj and
+Vo. If Veon(t) = +Vo or Veen(t) < —Vp, the mod-
ulator is saturated. In the first case, the duration
of the positive pulse is equal to the ramp period a,
and in the second case it is equal to zero, as shown
in Fig. 1(b).

The dynamics of the inverter system described
above can be represented by the following non-
autonomous differential equation with a discontin-
uous right hand side:

if chon(t) > V}amp(t%

di {—Ri+E0

dt  |—Ri—Ey if Veon(t) < Viamp(t).
(1a)
Here,
‘/ramp(t) = 2‘/0 (t/a - I_t/aJ - %) ) (lb)
VEOH@) = g(t)|t:a|_t/aj ’ 1C)
£(t) = a(Viet () — Bi(t)), (1d)
Viet (t) = Vi cos (:Z) . (le)

The number |t/a] denotes the largest integer not
greater than ¢/a (i.e., the integer part, or floor, of
t/a).

Next, let us introduce the dimensionless state vari-
Ri _ ot

able x = E—Z, the dimensionless time variable t = —
a

and the set of dimensionless parameters:

R R R

Ey
P=—W =—Vo, A=——a, I'=—.
BE* 0, 4 BE*V a

L R
The parameter P controls the amplitude of the
ramp function, ¢ is the amplitude of the reference
voltage, and I' represents the voltage of the DC
source, all normalized with respect to E, = 1 V.
The absolute value of A is proportional to the re-
ciprocal of the time constant of the converter filter,
normalized with respect to the period a of the ramp
signal.

In these terms, Eq. (1) can be rewritten as

)
)

where & denotes the derivative of x with respect to
t. The scalar function

@w@—ﬁawfﬂﬂ)—AM—mw

0,
0,

if p(t,z) > (2)
if p(t,z) <

with
- 2P _
0@ == E- 17 - ), (2)
defines the switching manifold

S ={(t=)] ¢t z)=0}.

This manifold separates the phase space of Eq. (2)
in two partitions in which the dynamic behavior
of the system is governed by different vector fields.
As shown in [Avrutin et al., 2015], all solutions to
Eq. (2) intersect the switching manifold ¥ trans-
versely.

The function ¢(f) represents the normalized control
signal Vion(t), i.e., the output signal of the sample-
and-hold unit S/H. The saw-tooth function 7(t) is a
periodically repeated ramp function with the ramp
period 1, i.e., n(t + 1) = n(f). The value [t| = k,
k =0,1,2,... is the normalized discrete time vari-
able.

(2d)

Eventually, integrating Eq. (2) over one ramp pe-
riod one obtains the primary stroboscopic map-
ping given by the following non-autonomous 1D
piecewise-smooth map

T = Flag, k), (3a)
F.(x,k) =bx —b+1if z € Z,;
Fo(x,k)=bx—b—1
+2b1=#@k) if e T,
Fr(x, k) =bx +b—1if z € Iy,

F(x, k) = (3b)

with b = e*, A < 0. Here the partitions

I, = {(.’L‘, k) ‘ l‘gsi(k‘)},
L= {(2,k) | s~ (k) <z <s™(k)}, (3¢)
In = {(z.k) | =57 (k)}

are separated from each other by the borders

st(k) = {(x,k) |z = %cos <2;’“> + fr} (3d)

and the function

2k T 1
z2(x, k) = % oS <:;> ey (3e)

with 0 < z(z, k) < 1 reflects the pulse duration in
the operating regime without saturation, normal-
ized with respect to the ramp period a.



PIECEWISE-LINEAR MAP FOR STUDYING BORDER-COLLISION PHENOMENA 5

2.2,

The second model describes the behavior of the
considered unipolar single-phase pulse-width mod-
ulated H-bridge inverter shown schematically in
Fig. 2(a). The generation of the control signals
K (t) and K (t) used to control the four switches
Sy — Sy of the inverter is illustrated in Figs. 2(b)
and 3. By contrast to the bipolar modulation ap-
proach, unipolar pulse-width modulation technique
uses two ramp signals Viamp(t) and —Viamp(t),
driven by the same clock, but with opposite po-
larity. Thus, the AC output voltage Vyu: can take
one of the three values, Fy, —FEy and zero [Rashid
& Luo, 2006].

The AC output voltage Vi is generated from the
DC voltage Ey as

Unipolar H-bridge inverter

Vout = 3 Eo (K7 (1) + Kg (1)) -

Closer examination of Fig. 2(b) shows that the out-
put voltage Vot switches between 0 and + FEj if the
control voltage Vion(t) is positive, and between 0
and —Ey if Veon(t) is negative.

The dynamics of the inverter described above can be
represented by the following non-autonomous dif-
ferential equation with a discontinuous right hand
side:

di

L= -Ri+ 1E) (Kf(t)+ Ki (1) (4a)

with
R B
K- {0 oo, w

and
Viamp(t) = Vo (t/a — [t/a] — 3) . (4d)

Here the functions Veon and Vie(t) are as given by
Egs. (1c¢) and (1e), respectively.

Similar to the previous model described in Sec. 2.1,
we can rewrite Eq. (4a) using dimensionless state
z and time t variables as well as the normalized
parameters P, ¢, A, and I'. Then, integrating the
resulting model over one ramp period, we obtain
the following non-autonomous 1D piecewise-smooth

map:
Tpy1 = F(xg, k), (5a)
F.(x,k) =bzx —b+1 it v e
1—6(z,k) (5b)
F.(x,k)=bx+b 2
F(x? k) = M( ) 14+60(x,k) :
—b 2 if x €l
Fro(x, k) =bx+b—1 it v ey,

where the partitions Z,, Z,, and Z, are defined by
Eq. (3c) and separated from each other by the time-
dependent boundaries s* (k) given by Eq. (3d). The
function

0(x, k) = % cos <2;Tf> - %m (6)
with |6(z, k)| < 1 combines the durations of both
positive and negative pulses normalized with re-
spect to one ramp period (see Figs. 2(b) and 3).
More precisely, if 0 < 8(x,k) < 1, then a positive
pulse with the duration z,:' = 6(x, k) is applied, and
if =1 < 6(z, k) < 0, a negative pulse of the duration
2, = —0(x, k). In other words, the duration of the
pulses in both cases is given by |0(z, k)|, and the
kind of the pulse (positive or negative) corresponds
to the sign of (z, k). Note that the applied control
produces positive pulses if 25 > so(k) and negative
pulses if x, < so(k), where

so(k) = {(x, k) |z = %cos (2:;’“)} .7

Nevertheless, the point so(k) is not a border point
in the model, because identical durations of posi-
tive and negative pulses imply that for each k the
function F,(z, k) is smooth in so(k).

2.3. Multi-level unipolar H-bridge
inverter

The third model describes the dynamics of the
multi-level cascaded H-bridge inverter with a unipo-
lar sinusoidal PWM [S.Khomfoi & Tolbert, 2011]
shown schematically in Fig. 4. In such an inverter
with N cells (two cascaded H-bridge inverter sys-
tem) and 2N levels, the feedback control is imple-
mented using 2N ramp signals. In the case N = 2,
i.e., for a 4-level inverter, the model in continuous
time is given by

. 4

d .

Ld—z:—Ri—k%EoE KY, (8a)
=1
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where

. : ()
Kg) _ +1 if Veon 2 VIP(&;;lpa (Sb)
-1 lf V::on < V;a]mpa
with j = 1,2,3,4 and
Vine = Vo (t/a — |t/a] = 1), (8¢)
Ve = Vo (=t/a+ [t/a]), (8d)
Vi = Vo (t/a — |t/a)), (8e)
Ve = Vo (1 —t/a+ [t/a]). (8f)

Here, similar to the previous cases, the functions
Veon and Viet(t) are as given by Eqgs. (1c) and (1e),
respectively.

This model leads to the following non-autonomous
1D piecewise-smooth map:

Tp1 = Flag, k), (9a)
F.(x)=blz—1)+1 if zeZ,;

Fu (k) = b = 1) + 3000 4§

lf €T € Ij(vll)’
Fg)(ﬂﬁ» k) =b(z— 1)+ %bl—z(m,k)
(2, k) it xezl;
F(xz, k) = r
F,Ef)(x, k) = bz + %) _ %blfz(g;,k;)
if €T € I/(\f),
Fﬁf)(x,k) =b(z+1)— %bl—z(m) _ %
if z c _’Zj(j‘)’
Fo(z)=bx+1)—1 if z eI,
(9b)

As in the previous case, the function

oz, k) —1 if ze I,(wl),
x, k if x¢€ I(Q),

z(x, k) = #le,k) M (9c)
—p(z, k) if xe€ Iﬁf),
—p(x,k)—1 if ze€ I/Ef),

2aq 27k 2al’

takes the values between zero and one and deter-
mines the duration of pulses in the operating regime
without saturation, normalized with respect to pa-
rameter a. The outer partitions Z,, Z, are defined
by Eq. (3¢) and the middle partition Z,, is subdi-
vided into sub-partitions

W ={(z.k) | s~ (k) <z<s,(k)},
I?) = {(z,k) | sy, (k) <z <s(k)}, (%)
I = {(x,k) | $"(k) < <sh,(k)},
IO = {(x.k) | st (k) <z<st(k)}

which are separated from each other by the border
s%(k) given by Eq. (7) and by the borders si (k):

si(k)_{(x,k)m_s()(k)i;fr}. (9F)

2.4. Piecewise-linear map

Comparing the functions F'(x, k) given by Egs. (3b),
(5b), and (9b), one can immediately recognize a
number of striking similarities. Indeed, all three
functions are defined on the same partitions Z,,
Ty, I (note that the functions (3b) and (5b) are
smooth on these partitions, while the function (9b)
is piecewise-smooth on Z,,). Moreover, on the outer
partitions Z, and Z, all three functions are identi-
cal and linear. In fact, the functions differ on the
middle partition Z,, only, where they are nonlinear
(see Fig. 5). Therefore, the question arises how these
nonlinearities influence the bifurcation structures in
the corresponding maps and what are generic bifur-
cation patterns determined by the overall structure
of the map independently of particular nonlineari-
ties. From the applied point of view, this question
is of a particular interest, because the nonlinearity
of the function on the middle partition is related
to the applied control strategy and the modulation
technique.

In order to identify the generic bifurcation patterns
in the considered class of models which do not de-
pend on particular nonlinearities in the definition
of F(x,k) on the middle partition, let us replace
the function F,,(z, k) in Egs. (3b), (5b), and (9b)
by its linear approximation defined by the points
(5 Fu(sy k) and (577, Fu(sf, k)). In this way, we
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obtain the following piecewise-linear map

Tpy1 =F(zp, k), k=0,1,2,... (10a)
F.(x)=br—b+1, ife e Z,;
F(x,k) ={ Fu(z, k) =cx+0(k), ifzeLy;
Fr(z)=bzr+b—1, ife € Z,.
(10b)
c=b— £(l—b),
P 10c)
2 k aq(l-0) (10c
0(k) = pcos ) HE T

As before, the partitions Z,, Z.,, and Z, are
given by Eq. (3¢). By definition, map (10) is non-
autonomous, as the boundaries s¥(k) between par-
titions Z,, Z,,, I, and therefore (by continuity of
the function) also the offset 6(k) of the function F,,
depend explicitly on k. This is illustrated in Fig. 6,
which shows the function F' depending on x and k.
As one can see, the slopes of the branches F, (z, k*),
F (z,k*), Fr(x,k*) remain the same for any fixed
k*. What changes depending on k*, is the position
of the border points and the offset of the middle
branch F,(x, k*).

Next, in order to obtain an autonomous model, we
follow the same approach as in [Avrutin et al., 2015,
2016, 2017b], and introduce the secondary strobo-
scopic mapping over one period of the low frequency
signal. Since the frequency modulation ratio is as-
sumed to be integer, this mapping is given by the
m-th iterate of the primary stroboscopic mapping:

Tnyr =fi" (wn) = (11)
F(...(F(F(zp,i), (i + 1) mod m), ...),
(i+m —1) mod m).

Note that, as the low frequency signal is m-periodic,
for each 0 <4 < m, map (11) is autonomous. In the
following, we investigate the dynamics of map (10)
using the secondary stroboscopic map f;"*, denoted
simply by f™. Clearly, an attracting m-cycle of
map (10) corresponding to a desired working regime
of the modeled inverter is associated in map (11)
with an attracting fixed point.

Following a standard approach of symbolic dy-
namics, one can associate an orbit of map (10)
with a symbolic sequence ¢ = ogojoy... with
o € {L, M, R}, k > 0. Each letter in this sequence
is determined by the partition Z,, to which the cor-
responding point xz; belongs. As usual, we associate

an m-cycle of map (10) with a shift-invariant sym-
bolic sequence o of length m. In the following, this
cycle is denoted by O,. Clearly, the same symbolic
sequence o is associated also with the corresponding
fixed point of map (11). For example, if an m-cycle
of map (10) is completely located inside the middle
partition Z,, (see below, Fig. 7(a)), both this cycle
and the corresponding fixed point of map (11) are
associated with the symbolic sequence M™.

To characterize cycles of map (10), we consider be-
low the ratios of particular letters in the associated
symbolic sequences. For a symbolic sequence ¢ con-
sisting of N,(0), Ny (o), and N (o) letters £, M,
R, respectively, with N,(c) + Ny (o) + Nr(0) =m,
these ratios are defined by

cel{L,M,R}  (12)

As an example, for the cycle O, with ¢ =
MZBLEZM?R??2 shown in Fig. 7(b) these ratios
are given by p.(o) = 0.22, p, (o) = 0.56, and
pr(c) = 0.22.

3. Bifurcation structures

In the following, we consider the bifurcation struc-
ture of the («,T') parameter plane of map (10),
0.0 < T' < 60.0, @ > 0.0 at the parameter values
A= —0.2, ¢ = 40.0, P = 20.0, which correspond to
physical implementations of the inverters described
in Sec. 2.1 — 2.3. As follows from the results ob-
tained before for other models, we have also distin-
guish between odd and even values of the frequency
modulation ratio m. Here, as typical values we con-
sider m = 100 and m = 101.

3.1. Domains Hgl), H§4) and l'[:(l*)

As one can see in Fig. 8, the major part of the
(o, T') parameter plain of map (11) is covered by
the domain II; corresponding to stable and glob-
ally attracting fixed points of map (11), and by
the domain II,, where map (11) has chaotic at-
tractors. Similar to the nonlinear models considered
in [Avrutin et al., 2015, 2016, 2017b], the boundary
has a quite frayed and irregular shape, so that one
can conclude that this irregularity is not caused by
the nonlinearities of the models considered in the
cited works. Remarkably, for smaller values of I" (in
the lower part of Fig. 8(a)), the boundary between
the domains II; and Il has a complex oscillating
shape, as illustrated in the magnifications shown in
Figs. 8(b),(c),(d). It can also clearly be seen that
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this oscillating part of the boundary converges to
a particular point, above which the shape of the
boundary changes.

To explain the observed properties of the bound-
ary between the domains II; and Il,,, it is neces-
sary to consider the interior structure of II;. Recall
that each fixed point of map (11) corresponds to
an m-cycle of map (10) and is associated with a
symbolic sequence o of length m. According to the
symbolic sequences associated with the fixed points
of map (11), the following three sub-regions of the
region Iy can be identified: .

Hgl): in this region, the complete cycle is located
in the middle partition, so that the symbolic
sequence associated with the cycle is M™.
This corresponds to the working regime of the
modeled inverter without saturation.

in this region, the symbolic sequence associ-
ated with the cycle consists of four blocks con-
sisting of the same letters and is of the form
MMLR2MMBR™M ny + ng + ng + ng = m,
n; > 0,1 = 1,2,3,4. Accordingly, the mod-
eled inverter is saturated twice per period
of the low frequency reference signal, once
from above and once from below. Note that
the region II{ has a regular interior structure
which differs for odd and even values of m
(see Sec. 3.2).

Hg*): In this region, the modulator is saturated
more than once per period from each side and
the symbolic sequence associated with the cy-
cles consist of more than four blocks. In the
parameter space, the region IIj is located be-
tween the region II{ and the chaotic domain
II. It has a complicated interior structure
which is reflected in the oscillating shape of
the boundary between regular and chaotic do-
mains.

A similar partitioning of the region Il; into the sub-

domains Hgl), H§4) and Hg*) has been reported for

the first time in [Avrutin et al., 2015] for map (3).

The present results confirm that this structure has

a more general meaning and can be expected in all

models leading to the piecewise-linear approxima-

tion given by map (10).

Note that, although in all three regions the map (11)

has globally attracting stable fixed points, the prop-

erties of the corresponding m-cycles of map (10)

differ. Indeed, fast-scale oscillations may lead to a

significant distortion of cycles of map (10) which

are not reflected in the corresponding fixed points

H§4):

of map (11). To illustrate this, Fig. 7 shows the typ-
ical shapes of m-cycles of map (10) for parameter
values in the regions Hgl), H§4) and Hg*). As one
can see in Fig. 7(a), the cycles existing in the do-
main Hgl) are sufficiently smooth (being confined
in a narrow band between two smooth boundaries
S?) Since the smoothness of the output signal of
the inverter (reflected in low values of its total har-
monic distortion) is an important issue for its prac-
tical use, the region Hgl) corresponds to the opti-
mal operation mode of the circuit. In the region

H§4) (Fig. 7(b)), the signal is less smooth, first due
to the kinks at the borders sf between the middle
and the outer partitions, and second due to the flat
plateaus in the outer partitions. Accordingly, the
quality of the output signal of the inverter in the

region H§4) is considerably lower than in Hgl) and,
as shown below, decreases for decreasing I'. Still,
the harmonic distortion of the signals in the region

H§4) is still much lower than in the region Hg*). In-
deed, in that region a third factor appears which
decreases the quality of the output signal, namely,
fast-scale oscillations, similar to the bubbling phe-
nomenon [Avrutin et al., 2017a]. As one can see in
Fig. 7(b), in the presented case these oscillations are
already sufficiently strong to force the cycle to jump
from one of the outer partitions into the other one.
Although the mechanism leading to the appearance
of these fast-scale oscillations is still not completely
understood, their presence in the piecewise-linear
map (10) demonstrates that they are not related
to the nonlinearities of the particular models where
they were observed before.

3.2. Border collisions

The lower boundary of the region H% corresponds
to a border collision £,,m at which a point the cycle
crosses one of the boundaries sf and enters there-
after into one of the outer partitions. A transition
across this boundary (for decreasing values of I') is
illustrated in Fig. 9. Note that at the moment of
the border collision neither the periodicity nor the
stability of any invariant set of map (10) changes,
the topological structure of the phase space remains
the same, so that the border collision (frequency
referred to as a persistence border collision) can
hardly be classified as a bifurcation. What changes
at the moment of a persistence border collision bi-
furcation is the location of the cycle with respect to
the partitions’ boundaries, and therefore also the
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ratios of the letters in the associated symbolic se-
quences. As one can see in Fig. 9(c),(d), the ratio

P (which is by definition 1.0 in the region Hgl))
decreases monotonously with decreasing I'. Accord-
ingly, the ratios p, and p increase (since, by defi-
nition, p, + pu + px = 1), which means for the out-
put signal of the inverter that the the length of the
plateaus in the outer partitions increases and the
quality of the signal decreases monotonously with
decreasing I'.

(4)

The interior structure of the domain II;"” is orga-
nized by a grid-like structure formed by persistence
border collision boundaries, as illustrated in Figs. 10
and 11. As one can see, the structures for odd and
even values of the frequency modulation ratio m
differ in size of the grid step. To understand the
reasons for that, let us consider how the symbolic
sequences associated with the cycles and the values
pr change as the parameters are varied across this
grid. It can easily be seen in Fig. 9(d) that for an
odd value of m this value changes by % at each bor-
der collision event. Indeed, as the boundary &,,101 is
crossed, we observe (for decreasing I') the sequence
of cycles

OM101 — OM100£ — 0M49RM50£
— OM49RM4952 — OM48R2M49£2 (13)
— OM48R2M48E3 — ...

In other words, at the moment of the first border
collision the cycle O, 101 touches the boundary s,
for some k = k*, which leads to the appearance of
the cycle O,,100, after this border collision event.
For decreasing I' this cycle continue to grow and
reaches the boundary sz at k = k*+50, so that the
cycle after the border collision becomes O, 49, ,,50 ..
The process continues in a similar way, preserving
the symmetry of the cycles as much as possible for
cycles of odd length, so that each cycles involved in
this structure is associated either with a symbolic
sequence

MmT_lfﬁRKMm;175£1+l (14)
or with

MUT IR L, (15)

m—1

where £ =0, ..., (™5=—1). Accordingly, each cell in
the overall grid-like structure is the existence region
of a cycles associated with a symbolic sequence (14)
or (14). Such a cell has a rhomboid shape and is con-
fined by four persistence border collision curves, and
the symbolic sequences in the adjacent cells differ by

one in the number of the letters £ or R. The corner
points of the cells correspond to codimension-2 bor-
der collision events, at which two points of the cy-
cle collide with the boundaries simultaneously, one
with szl and the other one with sé.

As one can see in Fig. 10, for even values of m
the cells of the grid-like structure in the domain

HYL) are about twice as big as for odd m. More-
over, Fig. 9(c) suggests that at each border colli-
sion event the value p,, changes by %, which seems
to contradict the fact that the grid-like structure is
formed by codimension-1 persistence border colli-
sion boundaries.

To explain this effect, let us consider first the cycle
O,m with an even m. In fact, for other cycles the
calculations similar to the ones presented below are
possible as well, but are quite tedious. Recall that
for each k = 0,...,m—1 the branch F),, of the func-
tion F' has the same slope ¢ and a different offset
0(k). Accordingly, starting with k£ = 0, we obtain

x1 = cxo+ 6(0), (16a)
x9 = 2 ao+c0(0)+0(1), (16b)
3= xo+20(0)+ch(1)+6(2), (16¢)
k
xp = &z + ch_i 0(i—1)
=1 (16d)

k ,
. 2 -1
= Fag+p E & cos <7r(z)> .
m
i=1

Using Eq. (16d), we obtain for k = m:

m .
. 2 (i — 1
xm:clxo—I—uE c‘lcos<7r(z)>.

: m
=1

Then, the periodicity condition zg = x,, implies

m 4 9 1
xo = ™ xg +chm_z cos <7r(z)> . (17)

- m
=1

Solving Eq. (17) with respect to zg, we obtain the
starting point of the cycle O, m:

: _Hcm icm_i €08 (27T(:n_1)> . (18)

Finally, substituting the expression (18) for =g
into Eq. (16d) we obtain all the points zy,

Tro =
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k=0,...,m—1 of the cycle O,m:
m .
_ K ki 27 (i — 1)
= 2 oo (P )
1=

M;klcki cos <27T(:n_1)> | (19)

Using Eq. (19), one can demonstrate that for even
values of m the points of the cycle O, fulfill the
following symmetry property:

Tpym = —Tk, k=0,....,5 -1 (20)

(for the proof see Appendix A). Note also that
the same symmetry property is fulfilled also by the
boundaries sf:

+ T

Spym = —SL, k=0,...,5% -1 (21)
2

Therefore, when for some k = k* the point z of

the cycle O,m touches the boundary s;:, the point

Tpym touches the boundary S;;_ﬂ, so that the cycle
2

after this border collision is OM%*IRM%*%' More-
over, the symmetry property (20) applies not only
to the cycle O,,m, so that each cycle in the domain
H§4) for even values of m is associated with a sym-
bolic sequence

M ERIME LS (22)
where £ = 0,..., (%% —1). For example, the sequence

of the border collision events shown in Fig. 9(a) be-
gins with the following cycles:

O, 100 = O, 19, 49, = O, 482,482
— OM47R3M47£3 — OM4GR4M46£4 (23)
— OM45R5M45£5 — ...

This explains why in Fig. 9(c) the value p,, changes
by % at each border collision event.

Note that the presented symmetry property of the

grid-like structure in the domain H(14) for even val-
ues of m is a peculiarity of the piecewise-linear
map (10). Indeed, a similar structure has been de-
scribed for the first time in [Avrutin et al., 2016]
for map (3). For this map, which has a nonlinear
branch F,,, the border collision events at the upper
and lower boundaries take place not simultaneously,
although the corresponding border collision curves
in the parameter space quite close to each other. As
a consequence the cells of the grid corresponding
to the cycles associated with the symbolic sequence
which are not of the form given in (22) are signifi-
cantly smaller than the other cells. Evidently, as the
branch F,, approaches its linear approximation, the

size of such cells tends to zero, and their disappear-
ance the piecewise-linear map (10) can be seen as
a kind of degeneration of a more complex structure
existing in models with nonlinear branches.

Note that the described property applies not only
to cycles of map (10) existing in the domain H(14).
In fact, the symmetry of the cycles for even values
of the frequency modulation ratio m influences all
structures involving border collisions. As an exam-

ple, Figs. 12(a), (b) show transitions from the do-

main Hg*) to chaos via irregular cascades of border
collisions (see [Avrutin et al., 2015]). The structure
appearing in the case m = 101 is evidently more
complex than in the case m = 100. A similar tran-
sition to chaos from the domains II; ; for m = 100
and Iy for m = 101 (see Sec. 3.3 for details) is il-
lustrated in Figs. 12(c), (d). As a matter of fact,
the complexity of the structure in the latter case is
much higher.

3.3. Degenerate pitchfork and flip
bifurcations

It has been reported in [Avrutin et al., 2017b] that
m-cycles of the nonlinear models considered in these
works may undergo smooth pitchfork and flip bifur-
cations, which may be, depending on the particular
system, super- or subcritical. In the piecewise-linear
map (10) such bifurcations cannot occur. Instead,
one can observe so-called degenerate pitchfork and
flip bifurcations [Avrutin et al., 2017b] which oc-
cur when the slope of a linear branch of map (11)
containing a fixed point becomes =+1.

More precisely, a degenerate pitchfork bifurcation
is a special case of a so-called degenerate +1-
bifurcation, as described in [Sushko & Gardini,
2010; Sushko et al., 2016]. A stable fixed point O,
of map (11) undergoes a degenerate pitchfork bifur-
cation if the eigenvalue A(O,) of O, passes through
+1 and at the bifurcation moment the branch f, of
the function f” containing O, becomes the iden-
tity function. Accordingly, at the bifurcation mo-
ment map (10) has an interval filled with neutral
(Lyapunov-stable, but not asymptotically stable)
m-cycles. After this bifurcation, the map has two
coexisting fixed points, which however — by contrast
to a smooth pitchfork bifurcation — are not neces-
sarily stable. If both of them are stable, their basins
of attraction are separated from each other by the
unstable fixed point O, and its preimages different
form itself, if any exist. Otherwise, if one or both
of them are unstable, the map may have chaotic
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attractors (in particular, two coexisting chaotic at-
tractors, or a chaotic attractor coexisting with a
stable fixed point). One more difference to a smooth
pitchfork bifurcation is that the fixed points appear-
ing at a degenerate pitchfork bifurcation belong to
the branches of the function adjacent to f, and
are associated with symbolic sequences &, 6 com-
plementary to o. Moreover, as these fixed points
appear from the end-points of the branch f,, the
degenerate pitchfork bifurcation of O, corresponds
to border collision bifurcations of Oz and Oj.

A supercritical degenerate flip bifurcation occurs
similarly, with the difference that the eigenvalue
A(Oy) of O, passes through —1 and at the bifur-
cation moment the second iterate f2 of the branch
fo becomes the identity function. Accordingly, at
the bifurcation moment, each point of the branch
fo except for O, belongs to a neutral 2-cycle, and
after the bifurcation the map (11) has an attracting
2-cycle, appearing at the bifurcation moment via a
border collision bifurcation.

Note that which particular bifurcation a cycle can
undergo is directly determined by the symbolic se-
quence associated with the cycle. Indeed, the eigen-
value of the cycle O, is given by

AOy) = bNele) (Nulo) pNr(e), (24)

Since the slope b of the linear functions F, and F}, is
positive, and the slope c of F,, is negative, the eigen-
value A(O,) is positive for odd N, (o) and negative
when N, (o) is even. Accordingly, in the former case
the cycle O, can undergo a degenerate pitchfork
and in the latter case a degenerate flip bifurcation.
Moreover, as we have analytic expressions for the
slopes b and ¢, Eq. (24) provides us with an ana-
lytic expression of the degenerate pitchfork or flip
bifurcation curve for any cycle O,. It follows also
from Eq. (24) that these expressions are identical for
any two cycles O, and O, with N () = Ny (o).

As an example, let us consider the fixed point O ,,m
which becomes unstable at the right boundary of
the region Hgl) via a degenerate pitchfork bifurca-
tion if m is even or via a degenerate flip bifurcation
if m is odd. As all points of the cycle O, are lo-
cated in the middle partition, Eq. (24) implies that
its eigenvalue is given by

MO, m) = <b - %(1 - b))m (25)

Combining this expression with the conditions of

degenerate pitchfork and flip bifurcations
A(OMm) = +1 and A(OMm) = 71, (26)

respectively, we obtain in both cases the following
expression of the degenerate pitchfork or flip bifur-
cation curve

P 1—|—b}

mm—{mmnr—~

a1y D

(1)

which confines the domain II;”, as illustrated in
Fig. 10.

For m = 100, a transition across the degenerate
pitchfork bifurcation boundary % ,,100 leading from

the region Hgl) to the bistalility region Hﬂ, is il-

lustrated in Figs. 13(a) and 14. As one can see
in Fig. 14(a), after the bifurcation the fixed point
O,m has several preimages, so that the basins of
attraction of the coexisting attractors (stable fixed
points or chaotic attractors) has a structure shown
in Fig. 14(b).

It is also visible in Fig. 14(a) that the branches of
f™ containing the stable fixed appearing at the de-
generate pitchfork bifurcation have very small do-
mains. Therefore, for increasing values of «, the sta-
ble fixed points transits quickly from one branch to
the next one. This results in two parallel cascades
of persistence border collisions. The peculiarity of
these cascades in the piecewise-linear map (11) with
an even value of m is related to its symmetry. In-
deed, the coexisting fixed points O, 99, and O, 909,
appearing at the degenerate pitchfork bifurcation
¥, 100 are not symmetric for themselves, but sym-
metric to each other. As a consequence, with fur-
ther increasing «, the fixed point O,,99, collides
with the boundary 82’ at the same moment as the
fixed point O, 99, collides with the boundary s; fm

After this persistence border collision event, the
map has again two stable fixed points associated
with symmetric symbolic sequences (recall that we
call two symbolic sequences defined on the alpha-
bet {L£, M, R} symmetric if one of them results
from the other one by interchanging the letters £
and R). Therefore, for increasing «, we observe a
cascade of persistence border collisions, at each of
which two coexisting cycles collide simultaneously
with the opposite boundaries of the partition Z,,.
The first steps of this cascade, illustrated in the in-
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set in Fig. 13(b), are

@: OM100 —

@: (OMggc and OMQQR) —

®: (OM97£ML and OMQQRMR) — (28>
@: (OM4GLMCM50R and OM46RMRM5OC) —

®: (OM46£MLM48RMR and OM46RMRM48LM£) —

®: (OM48LMCM48R and OM48RMRM48C) — ...

Here, the labels @ — ® correspond to Fig. 13(b).
Eq. (28) illustrates clearly the irregularity of this
persistence border collision cascade. Indeed, the cy-
cles collide with the boundaries at vastly different
phases (see the transition ® — ®), moreover, a
point which has already entered one of the or the
outer partitions Z,., Z, may also move back to Z,,.
This explains why the ratio p,, in Fig. 13(b) de-
creases non-monotonously.

The structure formed by the coinciding border col-

)

lision curves in the domain H§11 is shown in Fig. 15.
By contrast to the regular and well-understandable
structure existing inside the domain H§4), in the do-
main Hﬁ no such simple regularities can be recog-
nized. Iﬂdeed, Fig. 15 suggests that there are two
different structures inside this domain. The first
one, located in the lower part of Fig. 15 close to the
boundary between Hgli and Hgl) (see in the magni-
fications shown in Figi 15(b)), is quite dense, white
the second one located in the upper part of Fig. 15,
is much less dense. This difference is reflected also in
Fig. 13(a), where one can clearly see that the oscil-
lations of the fixed points starting immediately af-
ter the degenerate pitchfork bifurcation v, 100 sud-
denly stop. However, at present the regularities be-
hind these structures are still unclear. Note that in
maps with nonlinear branches these structure be-
comes even more complex, since in these maps the
coexisting fixed points do not undergo border colli-
sions simultaneously.

For odd values of m, the overall bifurcation struc-
ture is quite similar to the one described above. As
already mentioned, in this case the degenerate flip
bifurcation curve ¥,,m represents the boundary be-
tween the regions Hgl) associated with a globally
attracting fixed point of map (11) and IIs associ-
ated with its globally attracting 2-cycle. Fig. 13(b)
illustrates the transition across this boundary for
m = 101. After the bifurcation, the cycle under-
goes several persistence border collisions. In fact, in
this case there are more border collisions than for
even values of m, for the same reasons as the grid

size in the region HYL) is smaller for even than for
odd m. This can be seen for example in the insets
in Figs. 13(c) and 13(d), which magnify the same
parameter interval for m = 100 and m = 101, re-
spectively. It can also be seen in these figures that
for m = 101 the ratio p,, is oscillating significantly
stronger than for m = 100.

Clearly, not only the cycle O, but also other cy-
cles may undergo degenerate pitchfork and flip bi-
furcations. As already mentioned in [Avrutin et al.,
2017b], it follows from Eq. (24) that for an m-cycle
O, with j letters M in the associated symbolic se-
quence, 0 < j < m, (and, accordingly, m — j letters
L and R), the corresponding bifurcation boundary
is given by

_m

7/’3‘2 (Oé,F)|F:

- (29)

1-b

Obviously, Eq. (27) results from Eq. (29) for j = m.
As before, if j is even, the curve v; corresponds to
a degenerate pitchfork, and if j is odd, to a degen-
erate flip bifurcation. Note that the not a particular
symbolic sequence o associated with a cycle is rele-
vant here, but only the number j = N, (o). Accord-
ingly, the curve 9, acts as a bifurcation boundary
for all cycles with the same number j of points in
the middle partition (provided, the cycle undergoes

such a bifurcation). In the domain Hg*), this leads
to the alignment of the bifurcation boundaries, as
illustrated in Fig. 16. As one can see, this alignment

is particularly well-visible is the parts of the bound-

ary between the domains Hg*) and I, where de-

generate pitchfork and flip bifurcations lead to the
appearance of chaotic attractors. It is also clear that
in the chaotic domain, close to its boundary given
by a curve 1; with an even j, bistability in form of
two coexisting chaotic attractors can be expected,
while in the periodic domain, cycles with doubled
period can be expected close to a curve 3; with an
odd j.

In maps defined by functions with a nonlinear
branch F,, a similar alignment may be present
of not, depending on whether the branch is suffi-
ciently close to its linear approximation. If for all
x € T, the value of the derivative f/, is sufficiently
close to ¢, the eigenvalue of all cycles with the same
number j of points in the middle partition Z,, is
sufficiently close to the value given by Eq. (24), in-
dependently on the location of the points of the
cycle in Z,,. In this case, all these cycles undergo
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smooth (not degenerate) pitchfork and flip bifurca-
tions sufficiently close to the curve 7. As discussed
in [Avrutin et al., 2017b], in map (5) the described
alignment takes place, while in map (3) it does not.
The reasons for that are clearly visible in Fig. 5: the
maximal distance between the function F,, and its
linear approximation in map (5) is smaller approx-
imately by factor 100 than in map in map (3).

4. Summary

It is well known that models of power electronic
converters belong to the scope of the theory of
piecewise-smooth dynamical systems. It has been
recently shown that DC/AC converters, whose dy-
namics is governed by two external signals with
vastly different frequencies (a low frequency refer-
ence signal and a high frequency switching signal),
lead to a specific class of piecewise-smooth maps.
The characteristic feature of these maps is an ex-
tremely high (practically unpredictable) number of
switching manifolds. As a matter of fact, bifurcation
phenomena in such maps are not yet sufficiently
understood. In particular, we have recently found
that such maps may show several unusual effects,
such as a transition from regular dynamics to chaos
through an irregular sequence of persistence border-
collisions [Avrutin et al., 2015]; structures formed
by border collision of persistence type occurring in
the stability domain of fixed points [Avrutin et al.,
2016]; a global alignment of the bifurcation bound-
aries associated with smooth bifurcations [Avrutin
et al., 2017b]. However, the appearance of these
effects has been demonstrated on several different
models, while the question remained open which of
them are related to particular nonlinearities of these
models and which are more generic.

In order to provide an answer to this question, in the
present paper we demonstrated how two common
types of power electronic DC/AC converter sys-
tems, namely single-phase H-bridge and multi-level
inverters can be examined by means of a piecewise-
linear approximation. This map preserves the over-
all structure of particular approximated maps, ne-
glecting the specific nonlinearities related to the
applied feedback control. Due to the linearity of
its branches, this map allows a more deep analytic
treatment than the maps with non-linear branches.
First, we have investigated the overall structure of
the parameter space of the piecewise-linear map and
have shown that the overall partitioning of the pa-
rameter space previously reported for several partic-

ular models has a generic character. Next, we have
discussed bifurcation structures observed in a pa-
rameter plane of the piecewise-linear map, focusing
on two types of events most characteristic for such
maps, namely border collisions, which occur when
a fixed point or cycle collides with a switching man-
ifold in the state space, and bifurcations associated
with the change of stability of a fixed point or cycle.
We have shown that in the case of an even frequency
modulation ratio, the cycles of the piecewise-linear
map possess a certain symmetry. This explains the
differences in the structures formed by persistence
border collisions for odd and even frequency mod-
ulation ratios, which have been previously reported
not not understood. As a consequence of their sym-
metry, the cycles of the piecewise-linear map with
an even frequency modulation ratio collide with the
boundaries in the state space by two points simulta-
neously, which is not the case if the frequency mod-
ulation ratio is odd. Although in maps with non-
linear branches the symmetry is broken, it has still
some consequences for these maps as well. In partic-
ular, the cycles which cannot occur in the piecewise-
linear approximation (because they do not fulfill the
symmetry) occur in maps with nonlinear branches
in parameter regions which are significantly smaller
than the existence regions of the cycles which occur
in the piecewise-linear map.

The differences between odd and even values of the
frequency modulation ratio m regards also the bi-
furcations related to the change of stability. In par-
ticular, the m-cycle of the piecewise-linear map (the
fixed point of the secondary stroboscopic mapping)
associated with the optimal operational regime of
the modeled inverter without saturation becomes
unstable via a degenerate pitchfork bifurcation if m
is even and via a degenerate flip bifurcation if m
is odd. As a consequence, for even values of m the
stability region of this cycle in the parameter space
is followed by the region of bistability.
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Appendix A Proof of Eq. (20)
Eq. (19) can be rewritten as

k .
7 3ok (277 (Z—l)>
c cos | —= | +
1—cm — m

Tp =
T S 2m (i— 1)\ (A.1)
T om i:;rl c cos ( - >
1 —ucm O
where

or, equivalently,

k—1 .
ki1 211
o = g c cos| — | +
. m
=0
m—1 .
e 2m1
g MR oo < )
m
i=k

After some algebraic transformations (e.g., using
computer algebra software) one can show that

(A.3)

-1
(c+1)%2+4ccos? (Z)

k
2 (@™t +2¢™ — ¢ — 1) cos? <7T> +
m
4 (™ —1) cos? Tk cos® <1) +
m m
2 2k
("™ —1)sin (ﬂ-> sin <7r> +
m m

b = ((Cm —1)(c+1)-

(A.4)
T
2 cos? (%) ) =A
and moreover, that
Pppm = —A (A5)
which means
P = — Pt (A.6)

However, the expression ¢k+% is related to a point
Tt m only if m is an even number. Accordingly,

Eq. (A.6) proves Eq. (20), provided that m is even.
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Fig. 1. (a) Schematic diagram of the considered bipolar H-bridge inverter. Eg is the externally supplied DC- voltage, and ¢
is the AC-current supplied to the load. C'S is the current sensor, Vit (t) = Vi - cos(2mt/ma) the sinusoidal reference voltage,
Ves(t) = Bi(t) is the output voltage of the current sensor, and £(t) = a(Vier(t) — Bi(t)) the amplified error signal. (b) Sketch
of the current-mode control applied to generate the switching signals. The sample-and-hold unit S/H detects the sampled
signal £(ka) at the beginning of each clock time. This produces the control signal Veon(t) that together with the ramp function
Vramp (t) generates the red driving signals to the switches S1, S4, and Sa, S3. The intervals [2a, 4a) and [7a, 9a) are related to
saturation of the positive and the negative pulse, respectively.
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Fig. 2. (a) Schematic diagram of the considered unipolar H-bridge inverter. (b) Time diagram illustrating the generation of
the switching signals K;f (t) and AC output voltage Vout = lEo (K; + KE) If Veon(t) = Vo or Veon(t) < —Vp, the modulator

is saturated.
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Fig. 3. Value (z, k) in three partitions Z, Zy, Zr (upper panel). Corresponding durations of positive and negative pulses
z,j / z, in the unipolar PWM inverter modeled by map (5) (middle panel). Pulse duration zj in bipolar PWM inverter
modeled by map (3) (lower panel).
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Fig. 4. Schematic diagram of the considered four-level cascaded H-bridge inverter with unipolar sinusoidal PWM-1. For the

two cascaded H-bridge inverter systems, labeled by @ and @), the feedback control is implemented using the four ramp signals
‘/}(éablrzlp7 r(a2r21p and Vr(aBrzlpa Vrgln)qp
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Fig. 5. Function F(z,k) given by (a) Eq. (3b); (b) Eq. (5b); (c) Eq. (9b); for a fixed value k = k*. The insets show the
distance between F'(x, k™) and its linear interpolation on the middle partitions Zy. « = 5.5, I' = 45, m = 100, k* = 27.

Fig. 6. Function F(z,k) composed of the functions Fy(z,k), Fum(z,k) and Fr(z,k) which are linear both in z and k.
Periodically oscillating boundaries sf are clearly visible (one period is shown). Two examples of the function F(z,k) with a
fixed k are presented (at k1 = 60 and ke = 75). a = 5.5, ' = 45.0, m = 100.
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()

Fig. 7. Typical shapes of the m-cycles of map (10) for parameter values in the regions Hgl), Hg‘l) and Hg*), The pre-
sented cycles correspond to the symbolic sequences (a) M1, (b) MZ8LZM?8R?2| and (c) MT(RM)3(RL)2 (ML) ML
MULMPBP(LR)PMR) MR, (a) @ = 4.0, T = 40; (b) & = 4.0, T = 30; (c) & = 6.0, ' = 35.22; m = 100. The corresponding
parameter values are marked in Fig. 10 with p1, p2, p3, respectively.



PIECEWISE-LINEAR MAP FOR STUDYING BORDER-COLLISION PHENOMENA 21

46.0
38.5

~ ~
o S
(=) (e}
[3p) [3e)
0
< [
0
«@ [yp]
—~ —
0
0 =
[ Yol ks
) M E
6.

(d)

Fig. 8. Overall structure (a) of the (o, I') parameter plane of map (11) and its subsequent magnifications (b), (c), (d).
Domains Iy and Ilso correspond to globally attracting stable fixed points and chaotic attractors, respectively. m = 100.
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Fig. 9. Transition from the domain Hgl) to Hg4) (for decreasing values of I') leading to a cascade of persistence border
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collisions of fixed points of map (11) for (a) m = 100; (b) m = 101. The corresponding parameter paths are marked in Figs. 10
and 11 with A' and AQ, respectively. In (c¢) and (d) the corresponding ratios pr are shown, some of the associated symbolic
sequences are marked. Cycles of map (10) at the parameter points marked with p; and pg2 in (a) are shown in Figs. 7(a)

and 7(b), respectively.
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60.0

<

S
0.0

Fig. 10. Sub-domains Hgl), H§4), and Hg*) of the stability domain IT; in the case of the even frequency modulation ratio
m = 100. The boundaries of the region Hgl) corresponding to the optimal operational regime of the inverter are given by the

persistence border collision curve &,,100 and the degenerate pitchfork bifurcation curve v ,,100. Inside the 1'[54) the grid-like
structure formed by persistence border collision curves is shown. Bifurcation diagrams along the parameter paths marked with
Al B!, and C! are shown in Figs. 9(a), 13(a), and 12(b), respectively. Cycles of map (10) at the parameter values marked
with p1, p2, ps are shown in Fig. 7(a), (b), (c), respectively.



60.0

0.0

Fig. 11. Sub-domains Hgl), Hg‘l), and Hg*) of the stability domain II; in the case of the even frequency modulation ratio
m = 101. The boundaries of the region Hgl) corresponding to the optimal operational regime of the inverter are given by the

persistence border collision curve 101 and the degenerate flip bifurcation curve 1 ,,100. Inside the 1'[54) the grid-like structure
formed by persistence border collision curves is shown. Bifurcation diagrams along the parameter paths marked with Al, Bl,
and C! are shown in Figs. 9(b), 13(b), and 12(b), respectively.
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Fig. 12. Transitions to chaos via irregular cascades of border collisions. (a) from the domain Hg*), m = 100; (b) from the

domain Hg*), m = 101; The corresponding parameter paths are marked in Figs. 10 and 11 with C! and C?, respectively. (c)
from the domain Iy 1, m = 100; (d) from the domain IIz, m = 101; The corresponding regions are outlined by rectangles in
Figs. 13(a), (b), respectively. The cycle of map (10) at the parameter point marked with p3 in (a) is shown in Fig. 7(c).
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Fig. 13. (a), (¢) Transition from the domain Hgl) to the domain Hgli via a degenerate pitchfork bifurcation at ¥, 100,

m = 100. (b), (d) Transition from the domain Hgl) to the domain Hgl) via a degenerate flip bifurcation at 1,101, m = 101.
The corresponding parameter paths are marked in Fig. 10 by B! and B2, respectively. In (c) and (d) the ratio py in the
symbolic sequences associated with fixed points (c¢) and 2-cycles (d) of map f™ are shown. The inset in (c¢) shows the marked
rectangle close to ¥ ,,100 magnified. The symbolic sequences corresponding to the labels ® — ® are given in Eq. 28. I' = 48.0.
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Fig. 14. (a)The function f™ at a = 4.2 (after the degenerate pitchfork bifurcation 1 ,100). (b) Basins of attraction of
attractors (fixed points as well as chaotic attractors) belonging to the upper and the lower branches in the bifurcation
diagram. m = 100, I' = 48.0.

3.75 a 4.75 3.8 a 4.7
(a) (b)

Fig. 15. Structures formed by persistence border collisions of pairs of cycles inside the bistability region IIy 1. The presented
parameter region is marked in Fig. 10. The vertical axis corresponds to the distance of the actual parameter point from the
degenerate pitchfork bifurcation curve 1 ,100. The rectangle marked in (a) is shown magnified in (b). m = 100.
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Fig. 16. Alignment of degenerate bifurcation curves. Curves 927, 3!, 132, 39 correspond to degenerate flip, Curves 928,
2 36 10 to degenerate pitchfork bifurcations. The rectangle marked in (a) is shown magnified in (b). m = 100.
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