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Abstract— We consider the interconnection of dissipative
systems through coupling costs in a distributed economic MPC
context. Our goal is to provide a structured dissipativity prop-
erty for the overall system emerging from the subsystems’ local
dissiaptivity properties and their interconnection. However,
following this bottom-up approach, only in very few cases
we can expect to establish dissipativity of the overall system
based on a minimal set of assumptions. Hence, in this work we
introduce the concept of approximate dissipativity, which still
allows us to make statements on the system performance, albeit
somewhat unsharp. We verify approximate dissipativity for the
overall system under cost interconnection of the subsystems,
and we demonstrate how this concept can constructively be
exploited when adding a new subsystem to the network.

I. INTRODUCTION

Advances in communication and computation technologies
have led to the emergence of increasingly complex and large-
scale interconnected systems. Such interconnected systems
as, e.g., smart electric grids, groups of autonomous vehicles,
or highly automated self-organized factories in the context of
Industry 4.0 offer an entire new dimension of opportunities
for coordinated control, e.g., optimizing the overall system
performance or achieving a certain cooperative objective.
On the other hand, control of such large-scale systems is
an extremely challenging task, since system dynamics are
often nonlinear and subject to state and input constraints,
there are couplings of various kinds between the subsystems
and, moreover, in many applications the subsystems should
be operated in such a way that the real, economic cost is
optimized for the overall system.

Distributed model predictive control is an appealing con-
trol technique for such complex control tasks, since it natu-
rally answers all of the above challenges. There exists a vast
amount of literature on distributed model predictive control
for all different kinds of system setups (see [1]–[3] for an
overview), however, the economic version thereof has not yet
been well studied. The distinguishing feature of economic
MPC is that the cost criterion to be optimized can be chosen
arbitrarily, and hence may directly represent real economic
costs such as profit or operating costs. In the centralized
setting, various results on the stability and performance of
the economic MPC closed loop are available [3]–[7]. For
most of these results, a certain dissipativity property of
the system and its cost function plays a crucial role. For
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distributed economic MPC, only few results are available
in the literature. In the recent work [8], convergence to an
initially unknown overall optimal steady state is enforced
through average constraints. The approaches of [9] and [10]
rely on a dissipativity property formulated for the overall
system and an iterative distributed MPC scheme requiring
infinitely many iterations in each time step. Thereby, the
distributed problem can again be analyzed in a centralized
fashion and the structured nature of the problem is neglected.

Motivated by the sheer large scale of real-world intercon-
nected systems as well as by the fact that these networks are
constantly changing due to subsystems entering and leaving,
in this work we follow a bottom-up approach focusing on
the local subsystems, their local properties and the inter-
connection structure. More specifically, we investigate how
local dissipativity properties of the individual subsystems
carry over to the overall system when getting interconnected
through coupling costs. The resulting dissipativity property
for the overall system is structured and can therefore be
exploited in the design and analysis of non-iterative dis-
tributed economic MPC algorithms. This setup was already
considered in our previous work [11]. There, however,
dissipativity of the overall system could only be provided
in very special situations. In the work at hand, we introduce
the concept of approximate dissipativity, which now allows
us to make approximate dissipativity statements for the
overall system, while still only relying on a minimal set of
assumptions on the local subsystems. Moreover, this new
concept can not only be used for analysis, but allows for
a neat practical approach to assess the variation of overall
approximate dissipativity when adding new subsystems to
the network, based on local information only.

Finally we note that the interconnection of dissipative sys-
tems has already been investigated in the seminal work [12]
and more recently, e.g., in [13]. However, in constrast to
these works, in the context of (distributed) economic MPC
the interconnection of subsystems is not by means of input-
output interconnections. Instead, dissipativity enters rather
indirectly when analyzing the optimal solution to the MPC
optimization problem, c.f. [6], thus requiring different anal-
ysis techniques.

The remainder of this work is structured as follows. In
Section II, the system setup is detailed. The concept of
approximate dissipativity is discussed in Section III, and
Section IV verifies this property for the overall system. In
Section V we constructively utilize the concept of approxi-
mate dissipativity in the scenario of adding a new agent to
the network, and finally we discuss our results in Section VI.



Notation. The interconnection structure between subsys-
tems is described by a weighted directed graph G =
{V, E ,W} with vertices V = {1, . . . , P} representing the
subsystems, edges E = {(i, j) ∈ V × V} representing the
directed interconnection of systems, and the set of edge
weights W := {qij ∈ R, qij ≥ 0 ∀ (i, j) ∈ E}. Denote the
set of all neighbors of subsystem i by Ni := {j ∈ V | (i, j) ∈
E}. A directed graph G is said to be weakly connected if
there is a path between every pair of vertices when neglecting
the edge orientation. Denote by B ∈ {−1, 0, 1}|V|×|E| the
incidence matrix of a directed graph G with elements Bve
equalling 1 if vertex v is the head of edge e, −1 if v is
the tail of e, and 0 otherwise. For a thorough presentation of
algebraic graph theory we refer the reader to [14]. A function
ρ : Rn → R is positive semidefinite if ρ(0) = 0 and ρ(x) ≥ 0
for all x ∈ Rn. The function ρ : Rn → R is positive
definite if ρ(0) = 0 and ρ(x) > 0 for all x 6= 0. A matrix
A = A> ∈ Rn×n is positive (semi)definite if the quadratic
form x>Ax is positive (semi)definite, and we write A � 0
(A � 0). The operator ⊗ denotes the standard Kronecker
product, diag(·) denotes the block diagonal matrix built from
the respective arguments, In ∈ Rn×n denotes the n × n-
identity matrix, and 1n ∈ Rn denotes the all ones vector of
dimension n.

II. SYSTEM DESCRIPTION AND PROBLEM STATEMENT

In this work, we consider a group of P dynamically
decoupled discrete-time nonlinear systems

xi(t+ 1) = fi(xi(t), ui(t)), xi(0) = xi0, (1)

where xi(t) ∈ Xi ⊆ Rn, ui(t) ∈ Ui ⊆ Rm, i ∈ I[1,P ] :=
{1, . . . , P}, and fi : Xi × Ui → Xi continuous. Denote the
set of admissible state and input pairs by Zi ⊆ Xi×Ui, and
the set of admissible steady states for each subsystem i by
Zsi := {(xi, ui) ∈ Zi |xi = fi(xi, ui)}.

Coupling between the subsystems is introduced through
their economic stage cost functions being separable in a
purely local economic cost and coupling costs. Coupling
costs are induced by interaction with neighboring subsystems
subject to the fixed weighted directed interconnection graph
G = {V, E ,W}. In particular, we consider separable cost
functions of the form

`i(xi, ui, x−i) = `ii(xi, ui) +
∑
j∈Ni

`ij(xi, xj), (2)

with the continuous local economic cost function `ii : Rn ×
Rm → R, and the continuous coupling cost `ij : Rn×Rn →
R induced by the coupling between subsystem i and its
neighbors.By x−i we denote the collection of states of all
subsystems that are neighbors of subsystem i. Such coupling
costs are found, e.g., in classical multi agent settings repre-
senting a common objective, or in the case of subsystems
sharing a common resource. Studying the overall system,
we consider stacked local subsystems’ variables as, e.g., for
the state and input vectors x = [x>1 , . . . , x

>
P ]> ∈ RnP ,

u = [u>1 , . . . , u
>
P ]> ∈ RmP . The corresponding overall

system dynamics result in

x(t+ 1) = f(x(t), u(t)), x(0) = x0, (3)

with admissible state and input pairs (x(t), u(t)) ∈
Z := Z1 × · · · × ZP , and f(x, u) =
[f1(x1, u1)>, . . . , fP (xP , uP )>]>. Accordingly, the set
of admissible steady states of the overall systems is
Zs = Zsi × · · · × ZsP . The overall system becomes
interconnected when considering its stage cost given as

`(x, u) =

P∑
i=1

`i(xi, ui, x−i). (4)

The main theme of this work is a bottom-up approach
focusing on local subsystems’ properties and their mutual
interconnections from which we can deduce desired proper-
ties for the overall system. Hence, we first concentrate on the
isolated subsystems, i.e., neglecting the coupling costs, and
define the set of a subsystem’s local optimal steady states as

Z∗i = {(x∗i , u∗i ) ∈ Zsi | `ii(x∗i , u∗i ) ≤ `ii(xi, ui)∀(xi, ui) ∈ Zsi} .

Moreover, we assume that each subsystem alone is (strictly)
dissipative.

Definition 1 ([6], [12]): A control system (1) is dissipa-
tive with respect to a supply rate si : Zi → R if there exists
a non-negative function λi : Xi → R, a positive semidefinite
function ρi : Xi → R, and x̄i ∈ Xi such that

λi(fi(xi, ui))− λi(xi) ≤ si(xi, ui)− ρi(xi − x̄i) (5)

for all (xi, ui) ∈ Zi. If there exists ρi positive definite, then
the system is said to be strictly dissipative.

Assumption 1: Each subsystem i ∈ I[1,P ] is dissipative on
Zi with respect to the supply rate si(x, u) := `ii(xi, ui) −
`ii(x

s
i , u

s
i ) for all (xsi , u

s
i ) ∈ Z∗i , i.e., the following inequality

holds for all (xi, ui) ∈ Zi
λi(fi(xi, ui))− λi(xi)
≤ `ii(xi, ui)− `ii(xsi , usi )− ρi(xi − xsi ).

(6)

This dissipativity assumption is explicitly formulated for the
case of the optimal steady state (xsi , u

s
i ) not being unique.

Note that in the case of multiple optimal steady states, ρi
can only be positive semidefinite.

Remark 2: Note that for local tracking costs, i.e., cost
functions `ii that are positive definite w.r.t. (xsi , u

s
i ), strict

dissipativity is trivially fulfilled with λi = 0. Hence, all our
following results on system interconnections also hold for
local tracking costs as a special case of our more general
setup considering arbitrary economic local cost functions.

As discussed in the introduction, the assumed (strict)
dissipativity has strong implications on the optimal mode
of operation of a system. Indeed, Assumption 1 is sufficient
(and under some weak controllability conditions also nec-
essary) for the optimal mode of operation of the subsystem
being at the optimal steady state, cf. [15]. In an economic
MPC context, this property immediately yields asymptotic
averaged optimality of the closed loop. Consequently, in this
work we investigate under which conditions the assumed
local dissipativity properties carry over to the interconnected
overall system, and hence, allow us to make statements
about the optimal mode of operation of the overall system.
Moreover, a resulting structured dissipativity property for the



overall system can be exploited by non-iterative distributed
economic MPC schemes as shown in [11].

In our previous work [11] it turned out that verification
of strict dissipativity of the overall system was only pos-
sible in very special situations. Therefore, in this work we
introduce the concept of approximate dissipativity and aim
at verifying this relaxed version of (strict) dissipativity for
the interconnected overall system.

Definition 3 (Approximate dissipativity): A control sys-
tem as (1) is approximately dissipative with respect to a
supply rate si : Zi → R and suboptimality αi ≥ 0 if
there exists a non-negative function λi : Xi → R, a positive
semidefinite function ρi : Xi → R, and x̄i ∈ Xi such that

λi(fi(xi, ui))− λi(xi) ≤ si(xi, ui)− ρi(xi − x̄i) + αi (7)

for all (xi, ui) ∈ Zi. If there exists ρi positive definite, then
the system is said to be approximately strictly dissipative.

Note that this definition of approximate dissipativity re-
duces to classical dissipativity if the suboptimality is αi = 0.
The concept of approximate dissipativity is discussed in
Section III.

To summarize, the main goal of this work is to provide
approximate dissipativity for the interconnected overall sys-
tem (3) with overall cost function (4), i.e., verifying that
there exists a non-negative function Λ : X→ R, ρ̄ : X→ R
positive semidefinite, (x̄, ū) ∈ Zs, and ᾱ ≥ 0 such that

Λ(f(x, u))− Λ(x) ≤ s̄(x, u)− ρ̄(x− x̄) + ᾱ (8)

holds for all (x, u) ∈ Z with respect to the supply rate

s̄(x, u) =

P∑
i=1

`i(xi, ui, x−i)− `i(x̄i, ūi, x̄−i). (9)

III. APPROXIMATE DISSIPATIVITY

In this section we discuss the notion of approximate
dissipativity as introduced in Definition 3. The definition
and this study of approximate dissipativity are independent
of the above multi agent system setup, which is why we
consider in this section a general control system of the
form (3) with supply rate s(x, u) = `(x, u) − `(x̄, ū) and
(x̄, ū) ∈ Zs being a steady state of the system. Hence,
for notational simplicity, in this section we refer to the
above introduced (overall) system (3) with economic cost
function ` : X × U → R, but we would like to stress
that the results presented in this section do not rely on any
structure of f or `. As briefly mentioned above, the notion
of approximate dissipativity is useful in situations where we
do not succeed in providing a (strict) dissipativity property
for a given system and supply rate (9), but still would like to
make statements about (sub)optimality of system operation
with respect to a steady state (x̄, ū) ∈ Zs. For this reason,
we chose the term “approximate dissipativity” (as opposed to
“shortage” in the context of passivity [16, Chapter 6]), since
it is indeed only an inexact dissipativity characterization
owed to the fact that, e.g., the wrong storage function is
employed, a suboptimal steady state is considered, or the
optimal mode of system operation is actually not steady-state
operation.

Proposition 4: Assume that the control system (3) is ap-
proximately dissipative with supply rate s(x, u) = `(x, u)−
`(x̄, ū). Then for each feasible input sequence u(·) and
associated state sequence x(·) it holds that

lim inf
T→∞

∑T−1
k=0 `(x(k), u(k))

T
≥ `(x̄, ū)− α.

Proof: The proof follows along the lines of the proof
of [6, Proposition 6.4]. Due to λ being bounded from below,
we obtain

0 ≤ lim inf
T→∞

1

T
(λ(x(T ))− λ(x(0)))

≤ lim inf
T→∞

∑T−1
k=0 `(x(k), u(k))

T
− `(x̄, ū) + α.

In other words, this performance result states that steady-
state operation at (x̄, ū) is optimal up to the suboptimality α.
Note, however, that this does not necessarily imply existence
of any feasible system trajectory outperforming steady-state
operation at (x̄, ū), e.g., in the case when the system is actu-
ally optimally operated at this steady state but an unsuitable
storage function is considered; approximate dissipativity only
bounds the potential suboptimality of steady-state operation.

Remark 5: For an approximately strictly dissipative sys-
tem, the above derivation yields

lim inf
T→∞

∑T−1
k=0 ρ(x(k)− x̄)

T
− α ≤

lim inf
T→∞

∑T−1
k=0 `(x(k), u(k))

T
− `(x̄, ū).

Hence, every system trajectory with
lim infT→∞

∑T−1
k=0 ρ(x(k)−x̄)

T > α yields an averaged
performance, which is worse than steady-state operation.
This implies that the true optimal system trajectory resides
on average inside the region {x ∈ X | ρ(x− x̄) ≤ 2α}.

Remark 6: In an economic MPC formulation with a termi-
nal equality constraint requiring the predicted state trajectory
to end at x̄, approximate dissipativity directly yields a bound
on the averaged performance of the MPC closed loop of
`(x̄, ū)+α by slightly adapting the proof of [6, Theorem 1].
Moreover, practical (asymptotic) stability of x̄ in the MPC
closed loop follows, with the size of the convergence region
being proportional to α, cf. [17].

In the multi agent scenario of the work at hand, it is
obvious that considering an approximate dissipativity prop-
erty makes sense, since we establish this property based
on minimal assumptions on the local subsystems and their
interconnection only. However, even in classical centralized
economic MPC applications, approximate dissipativity may
appear and provide useful insights. For example, verifying
(strict) dissipativity for a given system is in general a very
hard problem. The recent work [18], for example, employed
sum-of-squares methods in order to find a storage function
fulfilling the dissipation inequality. Numerical issues may
prevent that this algorithm finds an exact solution in some
cases, however, an approximate dissipativity result could
still be obtained. For systems that are optimally operated



at a periodic orbit, the situation is even worse, since be-
sides (parameterized or multiple) storage functions, even
the optimal period length has to be determined. In some
applications, however, an approximate performance result
through approximate dissipativity with respect to a steady
state might be satisfactory. Finally, we would like to mention
that a similar notion to approximate dissipativity appeared
in the context of system dynamics subject to additive distur-
bances as robust dissipativity, see [19]. This definition looks
similar to ours, however, there it has been considered as an
exact dissipativity property for any possible realization of the
disturbance, and hence, our viewpoint and interpretation is
conceptually different.

IV. STRUCTURED APPROXIMATE DISSIPATIVITY
OF THE OVERALL SYSTEM

In this section we approach the main problem stated
above, which is to establish approximate dissipativity for
the interconnected overall system based on the subsystems’
local dissipativity and their interconnection structure. These
givens suggest to simply choose the sum of the local storage
functions as the storage function for the overall system, i.e.,
Λ(x) =

∑P
i=1 λi(xi). Hence, in order to verify approximate

dissipativity of the overall system, we need to provide ρ̄ � 0,
ᾱ ≥ 0 and (x̄, ū) ∈ Zs that satisfy the following inequality

P∑
i=1

(
− `ii(xsi , usi )− ρi(xi − xsi )

)
≤

P∑
i=1

(
− `ii(x̄i, ūi)

+
∑
j∈Ni

`ij(xi, xj)− `ij(x̄i, x̄j)
)
− ρ̄(x− x̄) + ᾱ (10)

for all x ∈ X.
Lemma 7: Let Assumption 1 hold and let (x̄, ū) ∈ Zs

be a steady state of the overall system (3). If there exists
a positive semidefinite function ρ̄ : X → R such that (10)
is satisfied for all (x, u) ∈ Z, then the overall system (3)
is approximately dissipative with respect to the supply rate
s̄(x, u) :=

∑P
i=1 `i(xi, ui, x−i)− `i(x̄i, ūi, x̄−i) and subop-

timality ᾱ. If there exists ρ̄ positive definite, then the overall
system is approximately strictly dissipative.

Proof: This directly follows from using Λ(x) =∑P
i=1 λi(xi) as storage function together with (10).

Note that this is still a challenging problem, however it
is potentially significantly simpler than directly finding a
suitable storage function Λ(x) which yields approximate
dissipativity of the overall system. Moreover, for certain
classes of systems and interconnection cost functions, as
discussed below, we can provide simple explicit solutions.
Obviously, the free variables ρ̄, (x̄, ū) and ᾱ in (10) could be
found by solving an optimization problem, e.g., minimizing
the suboptimality ᾱ, or minimizing the region {x ∈ X | ρ̄(x−
x̄) ≤ 2ᾱ}. The result above is rather general and does
not yield much insight into the problem, which is why we
specialize the system setup to the case of diffusive quadratic
coupling costs in the following.

A. Diffusive quadratic coupling costs

In this section, we specialize the coupling costs between
the subsystems to be of the following quadratic form.

Assumption 2: Let `ij(xi, xj) = qij(xi − xj)>(xi − xj),
where qij is given as the weight of the (i, j)-edge of G.

Such diffusive coupling costs appear in many practical
applications where, e.g., some synchronization or agreement
between the subsystems is desired. Considering diffusive
quadratic coupling costs defined by the interconnection graph
and its weights allows us to rewrite the overall system’s cost
using a compact graph theoretic notation

`(x, u) =

P∑
i=1

`ii(xi, ui) + x>(L⊗ In)x.

Here, L ∈ RP×P is the weighted undirected Laplacian
matrix of the interconnection graph G given as L = BWB>

with B the incidence matrix of G and W ∈ R|E|×|E| the
diagonal matrix of weights with entries Wee = qij if vertex
i is the tail and vertex j is the head of edge e. For the graph
G being weakly connected, L is positive semidefinite, with
a single 0 eigenvalue and according eigenvector 1P [14].

Assumption 3: The graph G is weakly connected.
In the case of a graph consisting of several disconnected
components, all our following results hold for each of the
separate subgraphs.

Aside from the coupling costs, we also assume the local
subsystems’ strict dissipativity to hold quadratically. Note
that this implies no general restrictions on the class of
subsystems and local economic cost functions, which are
both still considered arbitrary nonlinear.

Assumption 4: Let Assumption 1 hold for

ρi(xi − xsi ) = qii(xi − xsi )>(xi − xsi ) (11)

with qii ≥ 0 for all i ∈ I[1,P ].
Revisiting the above condition (10) for approximate dis-

sipativity of the overall system, it is seen that its right-
hand side becomes quadratic, i.e.,

∑P
i=1 ρi(xi − xsi ) +∑

j∈Ni
`ij(xi−xj) = (x−xs)>Qn(x−xs) +x>Lnx with

Ln = L⊗ In, Qn = Q⊗ In, and Q := diag(q11, . . . , qPP ).
For Qn 6= 0, i.e., at least one subsystem is strictly dissipative,
we may combine these terms to arrive at (x− xs)>Qn(x−
xs) + x>Lnx = (x − x̃)>(Qn + Ln)(x − x̃) + c̃, with
x̃ = (Qn + Ln)−1Qnx

s and c̃ = xs>Qnx
s − xs>Qnx̃

by completing the square. Observe that (Qn + Ln)−1 =
((Q+L)⊗In)−1 is indeed invertible since Q+L is positive
definite: Positive definiteness of Q+L results from L being
positive semidefinite with kerL = 1P and Q � 0 being
diagonal with at least one strictly positive diagonal element
qii and 1>PQ1P > 0. In the case of Qn = 0, we may
choose x̃ ∈ span{1P ⊗ v} for an arbitrary v ∈ Rn, and
c̃ = 0. The point x̃ can be seen as a “compromise point”,
which trades off the subsystems’ individual preferences rep-
resented by their local strict dissipativity property against the
synchronization requirement. Eventually, for the considered
case of quadratic coupling costs, verification of approximate
dissipativity of the overall system reduces to finding ρ̄ � 0,



(x̄, ū) ∈ Z, and ᾱ ≥ 0 such that
P∑
i=1

(
`ii(x̄i, ūi)− `ii(xsi , usi )

)
+ x̄>Lnx̄ (12)

+ ρ̄(x− x̄)− ᾱ ≤ (x− x̃)>(Qn + Ln)(x− x̃) + c̃

holds for all x ∈ X. Thus, the problem reduces to finding
a possibly quadratic function ρ̄ centered at x̄, which lower
bounds (x− x̃)>(Qn +Ln)(x− x̃) subject to the remaining
constant terms, which can always trivially be fulfilled for
ρ̄ = 0.

Lemma 8: Let Assumptions 2–4 hold. The overall sys-
tem (3) is approximately (strictly) dissipative with supply
rate s̄(x, u) :=

∑P
i=1 `i(xi, ui, x−i)− `i(x̄i, ūi, x̄−i) for any

(x̄, ū) ∈ Zs (if at least one subsystem is strictly dissipative).
Proof: The claim follows from the above derivations.

In particular, for approximate dissipativity, ρ̄ := 0 is a
possible choice with the corresponding suboptimality ᾱ =∑P
i=1 `ii(x̄i, ūi)−`ii(xsi , usi )+x̄>Lnx̄−c̃. For strict dissipa-

tivity, thanks to Qn+Ln being positive definite, there exists
Q̄ ∈ RnP×nP such that (Qn + Ln) − Q̄ � 0, and we may
choose ρ̄(x− x̄) := (x− x̄)>Q̄(x− x̄). In this case, the sub-
optimality increases to ᾱ =

∑P
i=1 `ii(x̄i, ūi)− `ii(xsi , usi ) +

x̄>Lnx̄ − c̃ + ∆c with ∆c = (Q̄x̄ − (Qn + Ln)x̃)>(Qn +
Ln − Q̄)−1(Q̄x̄− (Qn +Ln)x̃)− x̃>(Qn +Ln)x̃+ x̄>Q̄x̄,
which follows again by completing the squares and ensures
that ρ̄(x− x̄)−∆c bounds (x− x̃)>(Qn +Ln)(x− x̃) from
below.

Remark 9: This result highlights the main effect of con-
sidering the concept of approximate dissipativity in this
work. Whereas in [11] we could only make statements on
dissipativity of the overall system under special conditions,
here we provide approximate dissipativity for any system
interconnection of the considered kind.

A number of interesting explicit results directly follow for
specific scenarios. First, we recover the intuitive result of [11,
Lemma 9] that if all subsystems share the same optimal
steady state, then strict dissipativity of the overall system
directly follows.

Proposition 10: Let Assumptions 2–4 hold, let at least one
subsystem i ∈ I[1,P ] be strictly dissipative, and let xs = 1P⊗
xsi . Then the overall system is strictly dissipative with respect
to the supply rate s(x, u) = `(x, u) − `(xs, us). Moreover,
(xs, us) is the optimal steady state of the overall system.

Proof: The claim is proved by verifying (12) for ᾱ = 0.
First, note that x̃ = (Qn + Ln)−1Qnx

s = xs = 1P ⊗ xs1,
since Qn(1P⊗xs1) = (Qn+Ln)(1P⊗xs1) by (L⊗In)(1P⊗
xs1) = (L1P ) ⊗ (Inx

s
1) = 0, and c̃ = 0. Consequently, for

x̄ = xs and Qn + Ln being positive definite, there exists
Q̄ � 0 such that (x−x̃)>(Qn+Ln)(x−x̃) ≥ (x−x̄)>Q̄(x−
x̄) =: ρ̄(x− x̄), and hence (12) is satisfied with this choice
of ρ̄ and ᾱ = 0.
Next, we investigate the case of the compromise point x̃ =
(Qn+Ln)−1Qnx

s being a steady state of the overall system.
Proposition 11: Let Assumptions 2–4 hold, let at least

one subsystem be strictly dissipative, and assume ∃ū ∈ U :
(x̄, ū) ∈ Zs for x̄ = x̃ = (Qn + Ln)−1xs. Then the overall

system is approximately strictly dissipative with respect to
the supply rate s(x, u) = `(x, u)−`(x̄, ū) and suboptimality
ᾱ =

∑P
i=1

(
`ii(x̄i, ūi)−`ii(xsi , usi )

)
−(x̄−xs)>Qn(x̄−xs).

Proof: The claim is proved by verifying (12). A
possible choice is ρ̄(x − x̄) = (x − x̄)>(Qn + Ln)(x − x̄)
which allows us to set ᾱ = −c̃ +

∑P
i=1

(
`ii(x̄i, ūi) −

`ii(x
s
i , u

s
i )
)

+ x̄>Lnx̄ =
∑P
i=1

(
`ii(x̄i, ūi) − `ii(xsi , usi )

)
−

(x̄− xs)>Qn(x̄− xs).
This result highlights some peculiarities of the approach
taken in this work. In the calculation of the compromise
point, information about the subsystems’ individual local
cost functions is only considered by means of the quadratic
bound given by the subsystems’ dissipativity property. As a
consequence, even in the ideal case of the compromise point
x̃ being a steady state of the overall system, the suboptimality
ᾱ is “as large as the looseness of the local strict dissipativity
bound”. This insight sheds some light on our result in [11],
where we need to employ a restrictive “tightness” assumption
on the local economic cost functions and, accordingly, the
dissipativity bound in order to establish strict dissipativity
for the overall system.

Corollary 12: Let the conditions of Proposition 11 hold,
and let `ii(x̄i, ūi)− `ii(xsi , usi ) = qii(x̄i−xsi )>(x̄i−xsi ) for
all i ∈ I[1,P ]. Then the overall system is strictly dissipative
with respect to the supply rate s(x, u) = `(x, u)− `(x̄, ū).

Proof: The claim follows from Proposition 11 by
noting that now ᾱ =

∑P
i=1

(
`ii(x̄i, ūi)− `ii(xsi , usi )

)
− (x̄−

xs)>Qn(x̄− xs) = 0, i.e., the suboptimality vanishes.
The calculation of the compromise point x̃ is based on

minimal knowledge of the subsystems, namely the local
subsystems’ preference in terms of their optimal steady states
and the strictness of their local dissipativity only. However,
global information is required, since despite Qn+Ln is struc-
tured, its inverse is in general a full matrix. Even though the
compromise point x̃ could be computed by efficient and well-
established distributed optimization algorithms, we mainly
consider the above approximate dissipativity results useful as
analysis tool for making statements on the suboptimality of
a particular steady state, or to exploit the resulting structured
(approximate) dissipativity property in the analysis of non-
iterative distributed economic MPC algorithms, similarly
as shown in [11, Theorem 12]. On the contrary, in the
following section we show how the concept of approximate
dissipativity can constructively be utilized for the estimation
of induced suboptimality when adding a new subsystem to
the network.

V. ONLINE ADDITION OF A NEW SUBSYSTEM

This section showcases how the concept of approximate
dissipativity can constructively be employed in the exemplary
scenario of adding an additional subsystem to the network.
In general, addition of a new subsystem to the network
will change the overall system’s approximate dissipativity
property. Following the main theme of this work, we would
like to assess the influence of adding one subsystem to the
network based on local information available to the newly
added system. Hence, we avoid any overall recomputations



(and in an MPC context also reconfiguration), e.g., of the
compromise point, while still giving an estimate for the
potential degradation of overall performance (by means of
an increase of the suboptimality in the overall system’s
approximate dissipativity).

Proposition 13: Consider an approximately dissipative
overall system composed of P subsystems with supply rate
s(x, u) = `(x, u)−`(x̄, ū) and suboptimality α and consider
positive coupling costs `ij(xi, xj) ≥ 0 for all xi ∈ Xi, xj ∈
Xj . Suppose that one additional local dissipative subsystem
i = 0 with supply rate s0(x0, u0) = `00(x0, u0)− `(xs0, us0)
is added to the network, i.e., the node 0 and a set of adjacent
edges E0 with weights W0 to the interconnection graph
G. Then the extended overall system retains approximate
dissipativity with an increase in the suboptimality of ∆α =∑
j:(0,j)∈E0 `0j(x

s
0, x̄j) +

∑
j:(j,0)∈E0 `j0(x̄j , x

s
0).

Proof: The main idea is to render the addition of the
new subsystem somehow “neutral” with respect to the ap-
proximate dissipativity of the overall system. Hence, we keep
the reference point x̄ of the previous overall system unaltered
to refrain from overall computations based on information
of all subsystems, and to directly build the approximate
dissipativity result of the enlarged overall system upon the
previous approximate dissipativity property.

P∑
i=0

λi(fi(xi, ui))− λ(xi) ≤
P∑
i=1

(
`ii(xi, ui)− `ii(x̄i, ūi)

+
∑
j∈Ni

`ij(xi, xj)− `ij(x̄i, x̄j)
)
− ρ̄(x− x̄) + α

+ `00(x0, u0)− `00(xs0, u
s
0)

≤
P∑
i=1

(
`ii(xi, ui)− `ii(x̄i, ūi)

)
+ `00(x0, u0)− `00(xs0, u

s
0)

+
∑

(i,j)∈E

(
`ij(xi, xj)− `ij(x̄i, x̄j)

)
+
∑

(i,j)∈E0

(
`ij(xi, xj)

−
∑

j:(0,j)∈E0

`0j(x
s
0, x̄j)−

∑
j:(j,0)∈E0

`j0(x̄j , x
s
0)− ρ∗

(
[ x0
x ]−

[
xs
0
x̄

])
+ α∗.

Hence we arrive at approximate dissipativity of the ex-
tended overall system with a possible choice of ρ∗([ x0

x ] −[
xs
0
x̄

]
) = ρ̄

(
x − x̄

)
and suboptimality α∗ = α +∑

j:(0,j)∈E0 `0j(x
s
0, x̄j) +

∑
j:(j,0)∈E0 `j0(x̄j , x

s
0).

Remark 14: An interpretation of the above result, which
becomes also visible in the proof, is that we shift all induced
suboptimality to the newly added local subsystem in terms
of neglecting its local preference in terms of (strict) local
dissipativity. Thereby, we leave the approximate dissipativity
result for the existing overall system unaltered and capture
all influence of the newly added system in ∆α. Note that the
calculation of ∆α can indeed be carried out locally by the
newly added subsystem. This, however, comes at the price of
a conservative suboptimality for the extended overall system,
which is usually higher than considering the extended overall
system as a whole and following any of the approaches from
Section IV. More elaborate strategies diminishing this effect
are subject to future work.

VI. CONCLUSIONS

In this work, we considered a set of dynamically decou-
pled, locally dissipative subsystems interconnected through
coupling costs. We followed a bottom-up approach establish-
ing dissipativity of the interconnected overall system from
the subsystems’ local dissipativity and their interconnection
structure. Introducing the concept of approximate dissipa-
tivity enables us to provide this relaxed property for any
system of the considered class. For approximately dissipa-
tive systems, the performance and stability results derived
from classical dissipativity directly translate to suboptimality
estimates and practical stability, respectively. Moreover, we
showed how this property can constructively be utilized in a
plug-and-play scenario.

REFERENCES

[1] P. D. Christofides, R. Scattolini, D. M. de la Pena, and J. Liu,
“Distributed model predictive control: A tutorial review and future
research directions,” Computers & Chemical Engineering, vol. 51,
pp. 21–41, 2013.

[2] J. M. Maestre and R. R. Negenborn, Distributed model predictive
control made easy, vol. 69. Springer Science & Business Media,
2013.

[3] M. A. Müller and F. Allgöwer, “Economic and distributed model
predictive control: Recent developments in optimization-based con-
trol,” SICE Journal of Control, Measurement, and System Integration,
vol. 10, no. 2, pp. 39–52, 2017.

[4] M. Diehl, R. Amrit, and J. B. Rawlings, “A lyapunov function
for economic optimizing model predictive control,” IEEE Trans. on
Automat. Control, vol. 56, no. 3, pp. 703–707, 2011.

[5] R. Amrit, J. B. Rawlings, and D. Angeli, “Economic optimization
using model predictive control with a terminal cost,” Annual Reviews
in Control, vol. 35, no. 2, pp. 178–186, 2011.

[6] D. Angeli, R. Amrit, and J. B. Rawlings, “On average performance
and stability of economic model predictive control,” IEEE Trans. on
Automat. Control, vol. 57, no. 7, pp. 1615–1626, 2012.

[7] L. Grüne, “Economic receding horizon control without terminal con-
straints,” Automatica, vol. 49, no. 3, pp. 725–734, 2013.

[8] P. N. Köhler, M. A. Müller, and F. Allgöwer, “A distributed economic
mpc framework for cooperative control under conflicting objectives,”
Automatica, vol. 96, pp. 368 – 379, 2018.

[9] P. A. A. Driessen, R. M. Hermans, and P. P. J. van den Bosch,
“Distributed economic model predictive control of networks in com-
petitive environments,” in Proc. 51st IEEE Conference on Decision
and Control, pp. 266–271, 2012.

[10] J. Lee and D. Angeli, “Cooperative economic model predictive control
for linear systems with convex objectives,” European Journal of
Control, vol. 20, no. 3, pp. 141 – 151, 2014.

[11] P. N. Köhler, M. A. Müller, and F. Allgöwer, “Interconnections of
dissipative systems and distributed economic MPC,” in Proc. 6th IFAC
Conference on Nonlinear Model Predictive Control, pp. 88–93, 2018.

[12] J. C. Willems, “Dissipative dynamical systems part i: General theory,”
Archive for Rational Mechanics and Analysis, vol. 45, no. 5, pp. 321–
351, 1972.

[13] M. Arcak, C. Meissen, and A. Packard, Networks of Dissipative
Systems. Springer International Publishing, 2016.

[14] C. Godsil and G. F. Royle, Algebraic graph theory, vol. 207. Springer
Science & Business Media, 2013.

[15] M. A. Müller, D. Angeli, and F. Allgöwer, “On necessity and ro-
bustness of dissipativity in economic model predictive control,” IEEE
Trans. on Automat. Control, vol. 60, no. 6, pp. 1671–1676, 2015.

[16] H. K. Khalil, Nonlinear Systems. Prentice-Hall, New Jersey, 1996.
[17] D. Limón, T. Alamo, F. Salas, and E. F. Camacho, “Input to state

stability of min–max mpc controllers for nonlinear systems with
bounded uncertainties,” Automatica, vol. 42, no. 5, pp. 797–803, 2006.

[18] J. Berberich, J. Köhler, F. Allgöwer, and M. A.Müller, “Dissipativity
properties in constrained optimal control: a computational approach,”
submitted.

[19] F. A. Bayer, M. A. Müller, and F. Allgöwer, “On optimal system
operation in robust economic mpc,” Automatica, vol. 88, pp. 98 –
106, 2018.


