Herr Dr.

Viktor Avrutin

Wissenschaftlicher Mitarbeiter
Institut für Systemtheorie und Regelungstechnik

Kontakt

+49 711 685-67103
+49 711 685-57103

Pfaffenwaldring 9
70569 Stuttgart
Deutschland
Raum: 3.236

Fachgebiet

I'm working on the field of nonlinear dynamics. I'm mainly interested in bifurcation theory, particularly for piecewise smooth sytems, in border collision and homoclinic bifurcations, in low-dimensional chaos and bifurcations of chaotic attractors (crises). My further research interests include numerics, simulation software and algorithms, as well as neural networks.

 

Google-scholar profile

ORCID profile

Research Gate profile

Scopus Author ID: 6603800718

book_cover_Avrutin

https://doi.org/10.1142/8285

 

  1. article

    1. A. Panchuk, I. Sushko, and V. Avrutin, “Bifurcation Structures in a Bimodal Piecewise Linear Map,” Front. Appl. Math. Stat., vol. 3, no. 7, pp. 1–21, 2017.
    2. V. Avrutin, Zh. T. Zhusubaliyev, and E. Mosekilde, “Cascades of alternating pitchfork and flip bifurcations in H-bridge  inverters,” Physica~D, vol. 345, pp. 27–39, 2017.
    3. V. Avrutin, Zh. T. Zhusubaliyev, A. Saha, S. Banerjee, L. Gardini, and I. Sushko, “Dangerous Bifurcations Revisited,” Int. J. Bifurcat. Chaos, vol. 26, no. 14, p. 1630040, 2017.
    4. V. Avrutin, J. D. Morcillo, Zh. T. Zhusubaliyev, and F. Angulo, “Bubbling in a power electronic inverter: Onset, development and  detection,” Chaos, Solitons & Fractals, vol. 104, pp. 135–152, 2017.
    5. V. Avrutin, Zh. T. Zhusubaliyev, A. El Aroudi, D. Fournier-Prunaret, G. Garcia, and E. Mosekilde, “Disrupted bandcount doubling in an AC-DC boost PFC circuit  modeled by a time varying map,” J. of Physics, vol. 692, no. 1, p. 012003, 2016.
    6. M. Belopolskaya, V. Avrutin, S. Firsov, and A. Yakovlev, “Potential Applications of Serum HBsAg Level Measurement in  Patients with Hepatitis B and D Co-Infection,” Gastroenterology & Hepatology, vol. 5, no. 7, p. 00170, 2016.
    7. V. Avrutin, Zh. T. Zhusubaliyev, and E. Mosekilde, “Border collisions inside the stability domain of a fixed point,” Physica~D, vol. 321–322, pp. 1–15, 2016.
    8. I. Sushko, L. Gardini, and V. Avrutin, “Nonsmooth One-dimensional Maps: Some Basic Concepts and Definitions,” J. Differ. Equations Appl., vol. 22, no. 12, pp. 1816–1870, 2016.
    9. A. Panchuk, I. Sushko, and V. Avrutin, “Bifurcation structures in a bimodal piecewise linear map: chaotic  dynamics,” Int. J. Bifurcat. Chaos, vol. 25, no. 3, 2015.
    10. I. Sushko, V. Avrutin, and L. Gardini, “Bifurcation structure in the skew tent map and its application as  a border collision normal form,” J. of Diff. Equations and Applications, pp. 1–48, 2015.
    11. V. Avrutin, B. Schenke, and L. Gardini, “Calculation of homoclinic and heteroclinic orbits in 1D maps,” Communications in Nonlinear Science and Numerical Simulation, vol. 22, no. 1–3, pp. 1201–1214, 2015.
    12. V. Avrutin, E. Mosekilde, Zh. T. Zhusubaliyev, and L. Gardini, “Onset of chaos in a single-phase power electronic inverter,” Chaos, vol. 25, p. 043114, 2015.
    13. F. Tramontana, I. Sushko, and V. Avrutin, “Period adding structure in a 2D discontinuous model of economic growth,” Applied Mathematics and Computation, vol. 253, pp. 262–273, 2015.
    14. M. Belopolskaya, V. Avrutin, S. Firsov, and A. Yakovlev, “HBsAg level and Hepatitis B viral load correlation with  focus on pregnancy,” Annals of Gastroenterology, vol. 28, no. 3, pp. 1–6, 2015.
    15. I. Sushko, F. Tramontana, F. Westerhoff, and V. Avrutin, “Symmetry breaking in a bull and bear financial market model,” Chaos, Solinons and Fractals, vol. 79, pp. 57–72, 2015.
    16. V. Avrutin, M. Clüver, V. Mahout, and D. Fournier-Prunaret, “Bandcount adding structure and collapse of chaotic attractors in  a piecewise linear bimodal map,” Physica D, vol. 309, pp. 37–56, 2015.
    17. V. Avrutin, Ch. Dibak, A. Dal Forno, and U. Merlone, “Dynamics of a 2D piecewise linear Braess paradox model: Effect  of the third partition,” Int. J. Bifurcat. Chaos, vol. 25, no. 11, p. 1530031, 2015.
    18. D. Radi, L. Gardini, and V. Avrutin, “The Role of Constraints in a Segregation Model: The Asymmetric Case,” Discrete Dynamics in Nature and Society, vol. 2014, p. Article ID 569296, 17 pages, 2014.
    19. V. Avrutin, I. Sushko, and F. Tramontana, “Bifurcation structure in a bimodal piecewise linear business cycle  model,” Abstract and Applied Analysis, vol. 2014, p. Article ID 401319, 12 pages, 2014.
    20. V. Avrutin, L. Gardini, M. Schanz, and I. Sushko, “Bifurcations of chaotic attractors in one-dimensional piecewise smooth  maps,” Int. J. Bifurcat. Chaos, vol. 24, no. 8, p. 1440012, 2014.
    21. D. Radi, L. Gardini, and V. Avrutin, “The Role of Constraints in a Segregation Model: The Symmetric Case,” Chaos, Solitons and Fractals, vol. 66, pp. 103–119, 2014.
    22. V. Avrutin, B. Eckstein, M. Schanz, and B. Schenke, “Bandcount incrementing scenario revisited and floating regions within  robust chaos,” Mathematics and Computers in Simulation (Special Issue ``Discontinuous  Dynamical Systems: Theory and Numerical Methods’’), vol. 95, pp. 23–38, 2014.
    23. V. Avrutin, I. Sushko, and L. Gardini, “Cyclicity of chaotic attractors in one-dimensional discontinuous  maps,” Mathematics and Computers in Simulation (Special Issue ``Discontinuous  Dynamical Systems: Theory and Numerical Methods’’), vol. 95, pp. 126–136, 2014.
    24. L. Gardini, V. Avrutin, and I. Sushko, “Codimension-2 border collision bifurcations in one-dimensional discontinuous  piecewise smooth maps,” Int. J. Bifurcat. Chaos, vol. 24, no. 2, p. 1450024, 2014.
    25. A. Dal Forno, U. Merlone, and V. Avrutin, “Dynamics in Braess paradox with non-impulsive commuters,” Discrete Dynamics in Nature and Society, vol. 2014, p. Article ID 345795, 13 pages, 2014.
  2. inproceedings

    1. V. Avrutin, \zh.T. Zhusubaliyev, and E. Mosekilde, “Low-dimensional piecewise smooth maps with an unpredictable number  of switching manifolds,” in Proc. 9th European Nonlinear Dynamics Conference (ENOC), Budapest, Hungary, 2017.

2011: Status of Privatdozent (PD) and venia docendi from the University of Stuttgart, Germany.

2010: Habilitation in Computer Science and the degree Dr. rer. nat. habil. from the University of Stuttgart, Germany.
Title of the Habilitation thesis “Bifurcation structures within robust chaos: computational aspects, numerical investigation and analytic explanation”.

2003: Ph.D. degree from the University of Stuttgart, Germany. Title of the Ph.D. thesis “Zum Verhalten dynamischer Systeme mit einer stückweise-glatten Systemfunktion” (English: “Some aspects of the behavior of piecewise-smooth dynamical systems”).

1997: M.Sc. degree in Computer Science with Mathematics from the University of Stuttgart, Germany.

1992: B.Sc. degree from the St. Petersburg State Polytechnical University, Russia.

 

IST-Internal Report Piecewise-linear map for studying border-collision phenomena in DC/AC converters

Authors: V. Avrutin, Zh.T. Zhusbalyiev
Scope: Project “Generic bifurcation structures in piecewise-smooth maps with extremely high number of borders in theory and applications for power converter systems”, funded by DFG, AV 111/2-1
Date: 2019-04-20 
Status: submitted for publication in Int. J. Bifurcat. & Chaos

Zum Seitenanfang