Dieses Bild zeigt  Viktor Avrutin

Herr Dr.

Viktor Avrutin

Wissenschaftlicher Mitarbeiter
Institut für Systemtheorie und Regelungstechnik

Kontakt

+49 711 685-67103
+49 711 685-57103

Pfaffenwaldring 9
70569 Stuttgart
Deutschland
Raum: 3.236

Fachgebiet

I'm working on the field of nonlinear dynamics. I'm mainly interested in bifurcation theory, particularly for piecewise smooth sytems, in border collision and homoclinic bifurcations, in low-dimensional chaos and bifurcations of chaotic attractors (crises). My further research interests include numerics, simulation software and algorithms, as well as neural networks.

 

Google-scholar profile

ORCID profile

Research Gate profile

Scopus Author ID: 6603800718

book_cover_Avrutin

https://doi.org/10.1142/8285

 

  1. article

    1. Avrutin, V., Zhusubaliyev, Zh. T., & Bastian, F. (2021). Transformations of Closed Invariant Curves and Closed-Invariant-Curve-Like Chaotic Attractors in Piecewise Smooth Systems. Int. J. Bif. Chaos.
    2. Avrutin, V., Zhusubaliyev, zh. T., & Aroudi, A. E. (2021). Non-visible Transformations of Chaotic Attractors due to their Ultra Low Density in AC-DC Power Factor Correction Converters. Nonlinear Dynamics.
    3. Avrutin, V., Zhusubaliyev, Zh. T., Suissa, D., & Aroudi, A. E. (2020). Non-observable chaos in piecewise smooth systems. Nonlinear Dynamics, 99(3), 2031–2048. https://doi.org/10.1007/s11071-019-05406-7
    4. Avrutin, V., & Zhusubaliyev, Zh. T. (2020). Piecewise-linear map for studying border-collision phenomena in DC/AC converters. Int. J. Bif. Chaos, 30(7), 2030015. https://doi.org/S0218127420300153
    5. Simpson, D., Avrutin, V., & Banerjee, S. (2020). Nordmark map and the problem of large-amplitude chaos in impact oscillators. Phys. Rev. E, 102(2), 022211. https://doi.org/10.1103/PhysRevE.102.022211
    6. Avrutin, V., & Zhusubaliyev, Zh. T. (2019). Nested closed invariant curves. Int. J. Bif. Chaos, 29(7), 1930017. https://doi.org/10.1142/S0218127419300179
    7. Zhusubaliyev, Zh. T., Avrutin, V., Rubanov, V., Bushuev, D., Titov, D., & Yanochkina, O. (2018). Persistence Border Collisions in a Vibrating System Excited by an Unbalanced Motor with a Relay Control. AIP Conf. Proc., 1959, 080022. https://doi.org/10.1063/1.5034739
    8. Medvedev, A., Mattsson, P., Zhusubaliyev, Zh. T., & Avrutin, V. (2018). Nonlinear dynamics and entrainment in a continuously forced pulse-modulated model of testosterone regulation. Nonlinear Dynamics, 94(2), 1165--1181. https://doi.org/10.1007/s11071-018-4416-6
    9. Panchuk, A., Sushko, I., & Avrutin, V. (2017). Bifurcation Structures in a Bimodal Piecewise Linear Map. Front. Appl. Math. Stat., 3(7), 1–21. https://doi.org/10.3389/fams.2017.00007
    10. Avrutin, V., Zhusubaliyev, Zh. T., & Mosekilde, E. (2017). Cascades of alternating pitchfork and flip bifurcations in H-bridge  inverters. Physica~D, 345, 27–39. https://doi.org/10.1016/j.physd.2016.12.008
    11. Avrutin, V., Zhusubaliyev, Zh. T., Saha, A., Banerjee, S., Gardini, L., & Sushko, I. (2017). Dangerous Bifurcations Revisited. Int. J. Bifurcat. Chaos, 26(14), 1630040. https://doi.org/10.1142/S0218127416300408
    12. Avrutin, V., Morcillo, J. D., Zhusubaliyev, Zh. T., & Angulo, F. (2017). Bubbling in a power electronic inverter: Onset, development and  detection. Chaos, Solitons & Fractals, 104, 135–152. https://doi.org/10.1016/j.chaos.2017.08.003
    13. Avrutin, V., Zhusubaliyev, Zh. T., El Aroudi, A., Fournier-Prunaret, D., Garcia, G., & Mosekilde, E. (2016). Disrupted bandcount doubling in an AC-DC boost PFC circuit  modeled by a time varying map. J. of Physics, 692(1), 012003. https://doi.org/10.1088/1742-6596/692/1/012003
    14. Belopolskaya, M., Avrutin, V., Firsov, S., & Yakovlev, A. (2016). Potential Applications of Serum HBsAg Level Measurement in  Patients with Hepatitis B and D Co-Infection. Gastroenterology & Hepatology, 5(7), 00170. https://doi.org/10.15406/ghoa.2016.05.00170
    15. Avrutin, V., Zhusubaliyev, Zh. T., & Mosekilde, E. (2016). Border collisions inside the stability domain of a fixed point. Physica~D, 321–322, 1–15. https://doi.org/10.1016/j.physd.2016.02.011
    16. Sushko, I., Gardini, L., & Avrutin, V. (2016). Nonsmooth One-dimensional Maps: Some Basic Concepts and Definitions. J. Differ. Equations Appl., 22(12), 1816–1870. https://doi.org/10.1080/10236198.2016.1248426
    17. Panchuk, A., Sushko, I., & Avrutin, V. (2015). Bifurcation structures in a bimodal piecewise linear map: chaotic  dynamics. Int. J. Bifurcat. Chaos, 25(3), Article 3. https://doi.org/10.1142/S0218127415300062
    18. Sushko, I., Avrutin, V., & Gardini, L. (2015). Bifurcation structure in the skew tent map and its application as  a border collision normal form. J. of Diff. Equations and Applications, 1–48.
    19. Avrutin, V., Schenke, B., & Gardini, L. (2015). Calculation of homoclinic and heteroclinic orbits in 1D maps. Communications in Nonlinear Science and Numerical Simulation, 22(1–3), 1201–1214.
    20. Avrutin, V., Mosekilde, E., Zhusubaliyev, Zh. T., & Gardini, L. (2015). Onset of chaos in a single-phase power electronic inverter. Chaos, 25, 043114.
    21. Tramontana, F., Sushko, I., & Avrutin, V. (2015). Period adding structure in a 2D discontinuous model of economic growth. Applied Mathematics and Computation, 253, 262–273.
    22. Belopolskaya, M., Avrutin, V., Firsov, S., & Yakovlev, A. (2015). HBsAg level and Hepatitis B viral load correlation with  focus on pregnancy. Annals of Gastroenterology, 28(3), 1–6.
    23. Sushko, I., Tramontana, F., Westerhoff, F., & Avrutin, V. (2015). Symmetry breaking in a bull and bear financial market model. Chaos, Solinons and Fractals, 79, 57–72.
    24. Avrutin, V., Clüver, M., Mahout, V., & Fournier-Prunaret, D. (2015). Bandcount adding structure and collapse of chaotic attractors in  a piecewise linear bimodal map. Physica D, 309, 37–56.
    25. Avrutin, V., Dibak, Ch., Dal Forno, A., & Merlone, U. (2015). Dynamics of a 2D piecewise linear Braess paradox model: Effect  of the third partition. Int. J. Bifurcat. Chaos, 25(11), 1530031.
    26. Radi, D., Gardini, L., & Avrutin, V. (2014). The Role of Constraints in a Segregation Model: The Asymmetric Case. Discrete Dynamics in Nature and Society, 2014, Article ID 569296, 17 pages.
    27. Avrutin, V., Sushko, I., & Tramontana, F. (2014). Bifurcation structure in a bimodal piecewise linear business cycle  model. Abstract and Applied Analysis, 2014, Article ID 401319, 12 pages.
    28. Avrutin, V., Gardini, L., Schanz, M., & Sushko, I. (2014). Bifurcations of chaotic attractors in one-dimensional piecewise smooth  maps. Int. J. Bifurcat. Chaos, 24(8), 1440012.
    29. Radi, D., Gardini, L., & Avrutin, V. (2014). The Role of Constraints in a Segregation Model: The Symmetric Case. Chaos, Solitons and Fractals, 66, 103–119.
    30. Avrutin, V., Eckstein, B., Schanz, M., & Schenke, B. (2014). Bandcount incrementing scenario revisited and floating regions within  robust chaos. Mathematics and Computers in Simulation (Special Issue ``Discontinuous Dynamical Systems: Theory and Numerical Methods’’), 95, 23–38.
    31. Avrutin, V., Sushko, I., & Gardini, L. (2014). Cyclicity of chaotic attractors in one-dimensional discontinuous  maps. Mathematics and Computers in Simulation (Special Issue ``Discontinuous Dynamical Systems: Theory and Numerical Methods’’), 95, 126–136.
    32. Gardini, L., Avrutin, V., & Sushko, I. (2014). Codimension-2 border collision bifurcations in one-dimensional discontinuous  piecewise smooth maps. Int. J. Bifurcat. Chaos, 24(2), 1450024.
    33. Dal Forno, A., Merlone, U., & Avrutin, V. (2014). Dynamics in Braess paradox with non-impulsive commuters. Discrete Dynamics in Nature and Society, 2014, Article ID 345795, 13 pages.
  2. book

    1. Avrutin, V., Gardini, L., Sushko, I., & Tramontana, F. (2019). Continuous and Discontinuous Piecewise-Smooth One-dimensional Maps: Invariant Sets and Bifurcation Structures. In Nonlinear Science, Series~A. World Scientific. https://doi.org/10.1142/8285
  3. inproceedings

    1. Belopolskaya, M., Avrutin, V., Dmitriev, A., & Yakovlev, A. (2019). Effects of direct acting antiviral drugs on a fibrosis in patients with cirrhotic stage of hepatitis C. Rev. in Antiviral Therapy & Infectious Deseases (Proc. of 5th Central and Eastern European Meeting on Viral Hepatitis and HIV), 9.
    2. Simpson, D., Avrutin, V., & Banerjee, S. (2019). Nordmark map and the problem of large-amplitude chaos in an impact oscillator. Proc. of 15th Int. Conf. Dynamical Systems - Theory and                  Applications.
    3. Avrutin, V., Zhusubaliyev, Zh. T., & Aroudi, A. E. (2018). Non-Observable Chaos in Power Converters. Proc. of Int. Symp. on Nonlinear                  Theory and Its Applications (NOLTA2018).
    4. Zhusubaliyev, Zh. T., Avrutin, V., Rubanov, V., Bushuev, D., Titov, D., & Yanochkina, O. (2018). Persistence border collisions in a vibration system                  with a relay control. Proc. of Int. Symp. on Nonlinear                  Theory and Its Applications (NOLTA2018).
    5. Avrutin, V., Zhusubaliyev, zh. T., & Mosekilde, E. (2017). Low-dimensional piecewise smooth maps with an unpredictable number  of switching manifolds. Proc. 9th European Nonlinear Dynamics Conference (ENOC).

2011: Status of Privatdozent (PD) and venia docendi from the University of Stuttgart, Germany.

2010: Habilitation in Computer Science and the degree Dr. rer. nat. habil. from the University of Stuttgart, Germany.
Title of the Habilitation thesis “Bifurcation structures within robust chaos: computational aspects, numerical investigation and analytic explanation”.

2003: Ph.D. degree from the University of Stuttgart, Germany. Title of the Ph.D. thesis “Zum Verhalten dynamischer Systeme mit einer stückweise-glatten Systemfunktion” (English: “Some aspects of the behavior of piecewise-smooth dynamical systems”).

1997: M.Sc. degree in Computer Science with Mathematics from the University of Stuttgart, Germany.

1992: B.Sc. degree from the St. Petersburg State Polytechnical University, Russia.

 

IST-Internal Report Piecewise-linear map for studying border-collision phenomena in DC/AC converters

Authors: V. Avrutin, Zh.T. Zhusbalyiev
Scope: Project “Generic bifurcation structures in piecewise-smooth maps with extremely high number of borders in theory and applications for power converter systems”, funded by DFG, AV 111/2-1
Date: 2019-04-20 
Status: published by Int. J. Bifurcat. & Chaos

Zum Seitenanfang