Kontakt
Pfaffenwaldring 9
70569 Stuttgart
Germany
Raum: 2.246
Sprechstunde
Nach Vereinbarung.
Sekretariat:
Yaryna Svyryda: +49 711 685-67736 - yaryna.svyryda@ist.uni-stuttgart.de
Jasmin Winkler: +49 711 685-67731 - jasmin.winkler@ist.uni-stuttgart.de
(Zeitschriften-) Aufsätze
- L. Schwenkel, J. Köhler, M. A. Müller, und F. Allgöwer, „Model predictive control for linear uncertain systems using integral quadratic constraints“, IEEE Trans. Automat. Control, Bd. 68, Nr. 1, Art. Nr. 1, 2023, doi: 10.1109/TAC.2022.3171410.
- M. Köhler, L. Krügel, L. Grüne, M. A. Müller, und F. Allgöwer, „Transient Performance of MPC for Tracking“, preprint on arxiv, 2023, doi: https://doi.org/10.48550/arXiv.2303.10006.
- J. Berberich, J. Köhler, M. A. Müller, und F. Allgöwer, „Linear tracking MPC for nonlinear systems part II: the data-driven case“, IEEE Trans. Automat. Control, Bd. 67, Nr. 9, Art. Nr. 9, 2022, doi: 10.1109/TAC.2022.3166851.
- S. Wildhagen, F. Dürr, und F. Allgöwer, „Rollout event-triggered control: reconciling event- and time-triggered control“, at - Automatisierungstechnik, Bd. 70, Nr. 4, Art. Nr. 4, 2022, doi: 10.1515/auto-2021-0111.
- P. Pauli, J. Berberich, und F. Allgöwer, „Robustness analysis and training of recurrent neural networks using dissipativity theory“, at - Automatisierungstechnik, Bd. 70, Nr. 8, Art. Nr. 8, 2022, doi: 10.1515/auto-2022-0032.
- M. Köhler, M. A. Müller, und F. Allgöwer, „Distributed MPC for Self-Organized Cooperation of Multi-Agent Systems“, IEEE Trans. Automat. Control (submitted), Preprint: arXiv:2210.10128, 2022.
- J. Berberich, J. Köhler, M. A. Müller, und F. Allgöwer, „Linear tracking MPC for nonlinear systems part I: the model-based case“, IEEE Trans. Automat. Control, Bd. 67, Nr. 9, Art. Nr. 9, 2022, doi: 10.1109/TAC.2022.3166872.
- T. Martin und F. Allgöwer, „Data-driven system analysis of nonlinear systems using polynomial approximation“, IEEE Trans. Automat. Control (submitted), Preprint: arXiv:2108.11298, 2022.
- P. Wenzelburger und F. Allgöwer, „Model Predictive Control for Flexible Job Shop Scheduling in Industry 4.0“, Applied Sciences, Bd. 11, Nr. 17, Art. Nr. 17, 2021, doi: 10.3390/app11178145.
- P. Pauli, A. Koch, J. Berberich, P. Kohler, und F. Allgöwer, „Training Robust Neural Networks using Lipschitz Bounds“, IEEE Control Systems Lett., Bd. 6, S. 121–126, 2021, doi: 10.1109/LCSYS.2021.3050444.
- A. Koch, J. Berberich, und F. Allgöwer, „Provably robust verification of dissipativity properties from data“, IEEE Transactions on Automatic Control, 2021, doi: 10.1109/TAC.2021.3116179.
- M. I. Müller, A. Koch, F. Allgöwer, und C. R. Rojas, „Data-Driven Input-Passivity Estimation Using Power Iterations“, IFAC-PapersOnLine, Bd. 54, Nr. 7, Art. Nr. 7, 2021, doi: https://doi.org/10.1016/j.ifacol.2021.08.429.
- J. Bongard, J. Berberich, J. Köhler, und F. Allgöwer, „Robust stability analysis of a simple data-driven model predictive control approach“, IEEE Trans. Automat. Control, 2021.
- T. Martin und F. Allgöwer, „Dissipativity verification with guarantees for polynomial systems from noisy input-state data“, IEEE Control Systems Lett., Bd. 5, Nr. 4, Art. Nr. 4, 2021, doi: 10.1109/LCSYS.2020.3037842.
- T. Martin und F. Allgöwer, „Data-driven inference on optimal input-output properties of polynomial systems with focus on nonlinearity measures“, IEEE Trans. Automat. Control (early access), 2021, doi: 10.1109/TAC.2022.3226652.
- S. Linsenmayer, B. W. Carabelli, S. Wildhagen, K. Rothermel, und F. Allgöwer, „Controller and Triggering Mechanism Co-Design for Control over Time-Slotted Networks“, IEEE Trans.\ Control of Network Systems, Bd. 8, Nr. 1, Art. Nr. 1, 2021, doi: 10.1109/TCNS.2020.3024316.
- M. Hertneck, S. Linsenmayer, und F. Allgöwer, „Efficient stability analysis approaches for nonlinear weakly-hard real-time control systems“, Automatica, Bd. 133, S. 109868, 2021, doi: https://doi.org/10.1016/j.automatica.2021.109868.
- J. Berberich, J. Köhler, M. A. Müller, und F. Allgöwer, „Data-driven model predictive control with stability and robustness guarantees“, IEEE Trans. Automat. Control, Bd. 66, Nr. 4, Art. Nr. 4, 2021, doi: 10.1109/TAC.2020.3000182.
- A. Koch, J. M. Montenbruck, und F. Allgöwer, „Sampling Strategies for Data-Driven Inference of Input-Output System Properties“, IEEE Trans. Automat. Control, Bd. 66, S. 1144–1159, 2021, doi: 10.1109/TAC.2020.2994894.
- S. Yu, M. Hirche, Y. Huang, H. Chen, und F. Allgöwer, „Model predictive control for autonomous ground vehicles: a review“, Auton. Intell. Syst., Bd. 1, S. 4, 2021, doi: 10.1007/s43684-021-00005-z.
- J. Berberich, J. Köhler, M. A. Müller, und F. Allgöwer, „Data-driven model predictive control: closed-loop guarantees and experimental results“, at-Automatisierungstechnik, Bd. 69, Nr. 7, Art. Nr. 7, 2021, doi: 10.1515/auto-2021-0024.
- X. Wang, J. Berberich, J. Sun, G. Wang, F. Allgöwer, und J. Chen, „Data-Driven Control of Event-and Self-Triggered Discrete-Time Systems“, Automatica, 2021.
- S. Linsenmayer, M. Hertneck, und F. Allgöwer, „Linear Weakly Hard Real-Time Control Systems: Time- and Event-Triggered Stabilization“, IEEE Trans.\ Automat.\ Control, Bd. 66, Nr. 4, Art. Nr. 4, 2021, doi: 10.1109/TAC.2020.3000981.
- A. Koch, J. Berberich, J. Köhler, und F. Allgöwer, „Determining optimal input–output properties: A data-driven approach“, Automatica, Bd. 134, S. 109906, 2021, doi: https://doi.org/10.1016/j.automatica.2021.109906.
- X. Wang, J. Sun, J. Berberich, G. Wang, F. Allgöwer, und J. Chen, „Data-driven Control of Dynamic Event-triggered Systems with Delays“, IEEE Trans. Automat. Control, 2021.
- A. Alanwar, A. Koch, F. Allgöwer, und F. H. Johansson, „Data-Driven Reachability Analysis from Noisy Data“, Preprint: arXiv:2105.07229, 2021.
- K. Kuritz, D. Stöhr, D. S. Maichl, N. Pollak, M. Rehm, und F. Allgöwer, „Reconstructing temporal and spatial dynamics from single-cell pseudotime using prior knowledge of real scale cell densities“, Scientific Reports, Bd. 10, Nr. 1, Art. Nr. 1, 2020, doi: 10.1038/s41598-020-60400-z.
- J. Nubert, J. Köhler, V. Berenz, F. Allgöwer, und S. Trimpe, „Safe and Fast Tracking on a Robot Manipulator: Robust MPC and Neural Network Control“, IEEE Robotics and Automation Letters, Bd. 5, Nr. 2, Art. Nr. 2, 2020.
- J. Berberich, J. Köhler, F. Allgöwer, und M. A. Müller, „Dissipativity properties in constrained optimal control: A computational approach“, Automatica, Bd. 114, S. 108840, 2020, doi: 10.1016/j.automatica.2020.108840.
- J. Köhler, L. Schwenkel, A. Koch, J. Berberich, P. Pauli, und F. Allgöwer, „Robust and optimal predictive control of the COVID-19 outbreak“, Annual reviews in Control, 2020.
- J. Köhler, R. Soloperto, M. A. Müller, und F. Allgöwer, „A computationally efficient robust model predictive control framework for uncertain nonlinear systems“, IEEE Trans. Automat. Control, 2020.
- J. Köhler, M. A. Müller, und F. Allgöwer, „A nonlinear model predictive control framework using reference generic terminal ingredients“, IEEE Trans. Automat. Control, Bd. 65, Nr. 8, Art. Nr. 8, 2020.
- D. Imig, N. Pollak, F. Allgöwer, und M. Rehm, „Sample-based modeling reveals bidirectional interplay between cell cycle progression and extrinsic apoptosis“, PLoS Computational Biology, Bd. 16, Nr. 6, Art. Nr. 6, 2020.
- J. Köhler, P. Kötting, R. Soloperto, F. Allgöwer, und M. A. Müller, „A robust adaptive model predictive control framework for nonlinear uncertain systems“, Int. J. Robust and Nonlinear Control, S. 1–25, 2020.
- J. Berberich, C. W. Scherer, und F. Allgöwer, „Combining prior knowledge and data for robust controller design“, IEEE Trans. Automat. Control, 2020.
- J. Köhler, M. A. Müller, und F. Allgöwer, „A nonlinear tracking model predictive control scheme for unreachable dynamic target signals“, Automatica, Bd. 118, S. 109030, 2020.
- R. Soloperto, J. Köhler, und F. Allgöwer, „Augmenting MPC schemes with active learning: Intuitive tuning and guaranteed performance“, IEEE Control Systems Letters, Bd. 4, Nr. 3, Art. Nr. 3, 2020.
- J. Köhler, M. A. Müller, und F. Allgöwer, „Periodic optimal control of nonlinear constrained systems using economic model predictive control“, J. Proc. Contr., Bd. 92, S. 185–201, 2020.
- F. Allgöwer u. a., „Position paper on the challenges posed by modern applications to cyber-physical systems theory“, Nonlinear Analysis: Hybrid Systems, Bd. 34, S. 147–165, 2019, doi: 10.1016/j.nahs.2019.05.007.
- A. Romer, J. Berberich, J. Köhler, und F. Allgöwer, „One-shot verification of dissipativity properties from input-output data“, IEEE Control Systems Lett., Bd. 3, S. 709–714, 2019, doi: 10.1109/LCSYS.2019.2917162.
- J. Köhler, M. A. Müller, und F. Allgöwer, „Distributed model predictive control - Recursive feasibility under inexact dual optimization“, Automatica, Bd. 102, S. 1–9, 2019.
- F. D. Brunner, W. P. M. H. Heemels, und F. Allgöwer, „Event-triggered and self-triggered control for linear systems based on reachable sets“, Automatica, Bd. 101, S. 15–26, 2019.
- S. Wildhagen, M. A. Müller, und F. Allgöwer, „Predictive Control over a Dynamical Token Bucket Network“, IEEE Control Systems Lett., Bd. 3, Nr. 4, Art. Nr. 4, 2019, doi: 10.1109/LCSYS.2019.2919264.
- S. Linsenmayer, D. V. Dimarogonas, und F. Allgöwer, „Periodic event-triggered control for networked control systems based on non-monotonic Lyapunov functions“, Automatica, Bd. 106, S. 35–46, 2019, doi: 10.1016/j.automatica.2019.04.039.
- F. D. Brunner, D. Antunes, und F. Allgöwer, „Stochastic thresholds in event-triggered control: A consistent policy for quadratic control“, Automatica, Bd. 89, S. 376–381, 2018.
- J. Köhler, M. A. Müller, und F. Allgöwer, „On periodic dissipativity notions in economic model predictive control“, IEEE Control Systems Letters, Bd. 2, Nr. 3, Art. Nr. 3, 2018.
- F. A. Bayer, M. A. Müller, und F. Allgöwer, „On optimal system operation in robust economic MPC“, Automatica, Bd. 88, S. 98–106, 2018, doi: https://doi.org/10.1016/j.automatica.2017.11.007.
- J. Köhler, M. A. Müller, und F. Allgöwer, „Nonlinear reference tracking: An economic model predictive control perspective“, IEEE Trans. Automat. Control, Bd. 64, S. 254–269, 2018.
- S. Linsenmayer, H. Ishii, und F. Allgöwer, „Containability with event-based sampling for scalar systems with time-varying delay and uncertainty“, IEEE Control Systems Lett., Bd. 2, Nr. 4, Art. Nr. 4, 2018, doi: 10.1109/lcsys.2018.2847449.
- S. Linsenmayer, D. V. Dimarogonas, und F. Allgöwer, „Event-Based Vehicle Coordination Using Nonlinear Unidirectional Controllers“, IEEE Trans. Control of Network Systems, Bd. 5, Nr. 4, Art. Nr. 4, 2018, doi: 10.1109/TCNS.2017.2733959.
- F. A. Lincoln u. a., „Sensitization of glioblastoma cells to TRAIL- induced apoptosis by IAP- and Bcl-2 antagonism“, Cell Death and Disease, Bd. 9, Nr. 1112, Art. Nr. 1112, 2018, doi: 10.1038/s41419-018-1160-2.
- P. N. Köhler, M. A. Müller, und F. Allgöwer, „A distributed economic MPC framework for cooperative control under conflicting objectives“, Automatica, Bd. 96, S. 368–379, 2018, doi: https://doi.org/10.1016/j.automatica.2018.07.001.
- K. Kuritz, S. Zeng, und F. Allgöwer, „Ensemble Controllability of Cellular Oscillators“, IEEE Control Systems Letters, Bd. 3, Nr. 2, Art. Nr. 2, 2018, doi: 10.1109/LCSYS.2018.2870967.
- D. Imig, K. Kuritz, N. Pollak, M. Rehm, und F. Allgöwer, „Death patterns resulting from cell cycle-independent cell death“, IFAC-PapersOnLine, Bd. 51, Nr. 19, Art. Nr. 19, 2018, doi: https://doi.org/10.1016/j.ifacol.2018.09.028.
- F. D. Brunner, M. A. Müller, und F. Allgöwer, „Enhancing Output-feedback MPC with Set-valued Moving Horizon Estimation“, IEEE Transactions on Automatic Control, Bd. 63, Nr. 9, Art. Nr. 9, 2018.
- L. Danish, D. Imig, F. Allgöwer, P. Scheurich, und N. Pollak, „Bcl-2-mediated control of TRAIL-induced apoptotic response in the non-small lung cancer cell line NCI-H460 is effective at late caspase processing steps“, PLoS One, Bd. 13, Nr. 6, Art. Nr. 6, 2018, doi: https://doi.org/10.1371/journal.pone.0198203.
- K. Kuritz, D. Imig, M. Dyck, und F. Allgöwer, „Ensemble control for cell cycle synchronization of heterogeneous cell populations“, IFAC-PapersOnLine, Bd. 51, Nr. 19, Art. Nr. 19, 2018, doi: https://doi.org/10.1016/j.ifacol.2018.09.034.
- M. Hertneck, J. Köhler, S. Trimpe, und F. Allgöwer, „Learning an approximate model predictive controller with guarantees“, IEEE Control Systems Lett., Bd. 2, Nr. 3, Art. Nr. 3, 2018, doi: 10.1109/LCSYS.2018.2843682.
- J. Berberich, J. Köhler, F. Allgöwer, und M. A. Müller, „Indefinite Linear Quadratic Optimal Control: Strict Dissipativity and Turnpike Properties“, IEEE Control Systems Lett., Bd. 2, Nr. 3, Art. Nr. 3, 2018, doi: 10.1109/LCSYS.2018.2842142.
- K. Kuritz, D. Stöhr, N. Pollak, und F. Allgöwer, „On the relationship between cell cycle analysis with ergodic principles and age-structured cell population models“, J. Theor. Biol., Bd. 414, S. 91–102, 2017, doi: 10.1016/j.jtbi.2016.11.024.
- Y. Liu u. a., „Robust nonlinear control approach to nontrivial maneuvers and obstacle avoidance for quadrotor UAV under disturbances“, Robotics and Autonomous Systems, Bd. 98, S. 317–332, 2017.
- M. A. Müller und F. Allgöwer, „Economic and distributed model predictive control: recent developments in optimization-based control“, SICE Journal of Control, Measurement, and System Integration, Bd. 10, Nr. 2, Art. Nr. 2, 2017.
- C. Thomaseth, K. Kuritz, F. Allgoewer, und R. N., „The circuit-breaking algorithm for monotone systems“, Mathematical Biosciences, Bd. 284, S. 80–91, 2017.
- M. Lorenzen, M. A. Müller, und F. Allgöwer, „Stochastic Model Predictive Control without Terminal Constraints“, Int. J. Robust and Nonlinear Control, 2017, doi: 10.1002/rnc.3912.
- J. M. Montenbruck, M. Arcak, und F. Allgöwer, „An Input-Output Framework for Submanifold Stabilization“, IEEE Trans. Automat. Control, Bd. 62, Nr. 10, Art. Nr. 10, 2017.
- G. Goebel und F. Allgöwer, „New results on semi-explicit and almost explicit MPC algorithms“, at-Automatisierungstechnik, Bd. 65, Nr. 4, Art. Nr. 4, 2017.
- G. Goebel und F. Allgöwer, „Semi-explicit MPC based on subspace clustering“, Automatica, Bd. 83, S. 309–316, 2017.
- W. Halter, J. M. Montenbruck, Z. A. Tuza, und F. Allgöwer, „A resource dependent protein synthesis model for evaluating synthetic circuits“, J. Theor. Biol., Bd. 420, S. 267–278, 2017.
- M. Lorenzen, F. Dabbene, R. Tempo, und F. Allgöwer, „Stochastic MPC with Offline Uncertainty Sampling“, Automatica, Bd. 81, S. 176–183, 2017, doi: https://doi.org/10.1016/j.automatica.2017.03.031.
- M. Lorenzen, F. Dabbene, R. Tempo, und F. Allgöwer, „Constraint-Tightening and Stability in Stochastic Model Predictive Control“, IEEE Trans. Automat. Control, Bd. 62, Nr. 7, Art. Nr. 7, 2017, doi: 10.1109/TAC.2016.2625048.
- J. M. Montenbruck, D. Zelazo, und F. Allgöwer, „Fekete Points, Formation Control, and the Balancing Problem“, IEEE Trans. Automat. Control, Bd. 62, Nr. 10, Art. Nr. 10, 2017.
- S. Zeng und F. Allgöwer, „Structured optimal feedback in multi-agent systems: A static output feedback perspective“, Automatica, Bd. 76, S. 214–221, 2017, doi: 10.1016/j.automatica.2016.10.021.
Beiträge in Sammelband
- K. Kuritz, W. Halter, und F. Allgöwer, „Passivity-Based Ensemble Control for Cell Cycle Synchronization“, in Emerging Applications of Control and Systems Theory: A Festschrift in Honor of Mathukumalli Vidyasagar, R. Tempo, S. Yurkovich, und P. Misra, Hrsg. Cham: Springer International Publishing, 2018, S. 1–13. doi: 10.1007/978-3-319-67068-3_1.
Konferenzbeiträge
- Z. Ma, H. Schlüter, F. Berkel, T. Specker, und F. Allgöwer, „Recursive Feasibility and Stability for Stochastic MPC based on Polynomial Chaos“, in Proc. 12th IFAC Symp. Nonlinear Control Systems (NOLCOS), Canberra, Australia, Jan. 2023, Bd. 56, Nr. 1, S. 204–209. doi: 10.1016/j.ifacol.2023.02.035.
- R. Strässer, J. Berberich, und F. Allgöwer, „Robust data-driven control for nonlinear systems using the Koopman operator“, 2022.
- M. Hertneck und F. Allgöwer, „Dynamic self-triggered control for nonlinear systems with delays“, in Proc. 9th IFAC Conf. on Networked Systems (NECSYS), Zürich, Switzerland, 2022, S. 312–317. doi: 10.1016/j.ifacol.2022.07.278.
- T. Martin und F. Allgöwer, „Determining dissipativity for nonlinear systems from noisy data using Taylor polynomial approximation“, in Proc. American Control Conf. (ACC), Atlanta, GA, USA, 2022, S. 1432–1437. doi: 10.23919/ACC53348.2022.9867806.
- T. Martin, T. B. Schön, und F. Allgöwer, „Gaussian inference for data-driven state-feedback design of nonlinear systems“, 22nd IFAC World Congress (accepted), Preprint: arXiv:2211.05639, 2022.
- S. Schlor, R. Strässer, und F. Allgöwer, „Koopman interpretation and analysis of a public-key cryptosystem: Diffie-Hellman key exchange“, 2022.
- H. Schlüter und F. Allgöwer, „Stochastic model predictive control using initial state optimization“, in Proc. 25th Int. Symp. Mathematical Theory of Networks and Systems (MTNS), Bayreuth, Germany, Nov. 2022, Bd. 55, Nr. 30, S. 454–459. doi: 10.1016/j.ifacol.2022.11.095.
- D. Müller, J. Feilhauer, J. Wickert, J. Berberich, F. Allgöwer, und O. Sawodny, „Data-driven predictive disturbance observer for quasi continuum manipulators“, in Proc. 61st IEEE Conf. Decision and Control (CDC), Cancun, Mexico, 2022, S. 1816–1822. doi: 10.1109/CDC51059.2022.9992740.
- J. Berberich, J. Köhler, M. A. Müller, und F. Allgöwer, „Stability in data-driven MPC: an inherent robustness perspective“, in Proc. 61st IEEE Conf. Decision and Control (CDC), Cancun, Mexico, 2022, S. 1105–1110. doi: 10.1109/CDC51059.2022.9993361.
- D. Meister, F. Dürr, und F. Allgöwer, „Shared Network Effects in Time- versus Event-Triggered Consensus of a Single-Integrator Multi-Agent System“, 2022. [Online]. Verfügbar unter: https://arxiv.org/abs/2211.08156
- M. Köhler, J. Berberich, M. A. Müller, und F. Allgöwer, „Data-driven distributed MPC of dynamically coupled linear systems“, in Proc. 25th IFAC Int. Symp. Mathematical Theory of Networks and Systems (MTNS), Bayreuth, Germany, 2022, S. 365–370. doi: 10.1016/j.ifacol.2022.11.080.
- R. Drummond, S. Duncan, M. Turner, P. Pauli, und F. Allgower, „Bounding the difference between model predictive control and neural networks“, in Learning for Dynamics and Control Conference, 2022, S. 817--829.
- D. Meister, F. Aurzada, M. A. Lifshits, und F. Allgöwer, „Analysis of Time- versus Event-Triggered Consensus for a Single-Integrator Multi-Agent System“, in Proc. 61st IEEE Conf. on Decision and Control (CDC), Cancun, Mexico, 2022, S. 441–446. doi: 10.1109/CDC51059.2022.9993301.
- P. Pauli, N. Funcke, D. Gramlich, M. A. Msalmi, und F. Allgöwer, „Neural network training under semidefinite constraints“, in 2022 IEEE 61st Conference on Decision and Control (CDC), Dez. 2022, S. 2731–2736. doi: 10.1109/CDC51059.2022.9992331.
- C. Klöppelt, L. Schwenkel, F. Allgöwer, und M. A. Müller, „Transient Performance of Tube-based Robust Economic Model Predictive Control“, in Proc. IFAC Conf. Nonlinear Model Predictive Control (NMPC), Bratislava, Slovakia, 2021, S. 28–35. doi: 10.1016/j.ifacol.2021.08.520.
- M. Hertneck und F. Allgöwer, „A Simple Approach to Increase the Maximum Allowable Transmission Interval“, in Proc. 3rd IFAC Conf. on Modelling, Identification and Control of Nonlinear Systems (MICNON), Tokyo, Japan, 2021, S. 443–448. doi: 10.1016/j.ifacol.2021.10.390.
- A. Alanwar, A. Koch, F. Allgöwer, und K. H. Johansson, „Data-Driven Reachability Analysis Using Matrix Zonotopes“, in Proceedings of the 3rd Conference on Learning for Dynamics and Control, 2021, Bd. 144, S. 163--175.
- M. Hertneck und F. Allgöwer, „Dynamic self-triggered control for nonlinear systems based on hybrid Lyapunov functions“, in Proc. 60th IEEE Conf. Decision and Control (CDC), Austin, TX, USA, 2021, S. 533–539. doi: 10.1109/CDC45484.2021.9682784.
- S. Wildhagen, J. Berberich, M. Hirche, und F. Allgöwer, „Improved stability conditions for systems under aperiodic sampling: model- and data-based analysis“, in Proc. 60th IEEE Conf. on Decision and Control (CDC), Austin, TX, USA, 2021, S. 5788–5794.
- R. Strässer, J. Berberich, und F. Allgöwer, „Data-Driven Control of Nonlinear Systems: Beyond Polynomial Dynamics“, in Proc. 60th IEEE Conf. Decision and Control (CDC), Austin, TX, USA, 2021, S. 4344–4351. doi: 10.1109/CDC45484.2021.9683211.
- J. Berberich, J. Köhler, M. A. Müller, und F. Allgöwer, „On the design of terminal ingredients for data-driven MPC“, in Proc. 7th IFAC Conf. Nonlinear Model Predictive Control (NMPC), Bratislava, Slovakia, 2021, S. 257–263. doi: 10.1016/j.ifacol.2021.08.554.
- J. Berberich, S. Wildhagen, M. Hertneck, und F. Allgöwer, „Data-driven analysis and control of continuous-time systems under aperiodic sampling“, in Proc. 19th IFAC Symp. System Identification (SYSID), Padova, Italy, 2021, S. 210–215. doi: 10.1016/j.ifacol.2021.08.360.
- P. Pauli, J. Köhler, J. Berberich, A. Koch, und F. Allgöwer, „Offset-free setpoint tracking using neural network controllers“, in Proc. 3rd Conf. on Learning for Dynamics and Control (L4DC), Zurich, Switzerland, 2021, S. 992–1003.
- S. Schlor, M. Hertneck, S. Wildhagen, und F. Allgöwer, „Multi-party computation enables secure polynomial control based solely on secret-sharing“, in Proc. 60th IEEE Conf. Decision and Control (CDC), Austin, TX, USA, 2021, S. 4882–4887. doi: 10.1109/CDC45484.2021.9683026.
- M. Alsalti, J. Berberich, V. G. Lopez, F. Allgöwer, und M. A. Müller, „Data-Based System Analysis and Control of Flat Nonlinear Systems“, in Proc. 60th IEEE Conf. Decision and Control (CDC), Austin, TX, USA, 2021, S. 1484–1489. doi: 10.1109/CDC45484.2021.9683327.
- R. Soloperto, P. Wenzelburger, D. Meister, D. Scheuble, V. S. M. Breidohr, und F. Allgöwer, „A control framework for autonomous e-scooters“, in Proc. 16th IFAC Symposium on Control in Transportation Systems (CTS), Lille, France, 2021, S. 252–258. doi: 10.1016/j.ifacol.2021.06.030.
- P. Pauli, D. Gramlich, J. Berberich, und F. Allgöwer, „Linear systems with neural network nonlinearities: Improved stability analysis via acausal Zames-Falb multipliers“, in Proc. 60th IEEE Conf. on Decision and Control (CDC), Austin, TX, USA, 2021, S. 3611–3618.
- N. Wieler, J. Berberich, A. Koch, und F. Allgöwer, „Data-driven controller design via finite-horizon dissipativity“, in Proc. 3rd Learning for Dynamics and Control Conf. (L4DC), Zürich, Switzerland, 2021, Bd. 144, S. 287–298.
- S. Wildhagen und F. Allgöwer, „Rollout scheduling and control for disturbed systems via tube MPC“, in Proc. 59th IEEE Conf. Decision and Control (CDC), Jeju, South Korea, 2020, S. 3145–3150. doi: 10.1109/CDC42340.2020.9304512.
- J. Berberich, J. Köhler, M. A. Müller, und F. Allgöwer, „Robust constraint satisfaction in data-driven MPC“, in Proc. 59th IEEE Conf. Decision and Control (CDC), Jeju, South Korea, 2020, S. 1260–1267. doi: 10.1109/CDC42340.2020.9303965.
- M. Hertneck, S. Linsenmayer, und F. Allgöwer, „Stability Analysis for Nonlinear Weakly Hard Real-Time Control Systems“, in Proc. 21st IFAC World Congress, Berlin, Germany, 2020, S. 2632–2637. doi: 10.1016/j.ifacol.2020.12.307.
- P. Pauli, A. Koch, und F. Allgöwer, „Smartphone Apps for Learning Progress and Course Revision“, Berlin, Germany, Juli 2020.
- A. Camisa, P. N. Köhler, M. A. Müller, G. Notarstefano, und F. Allgöwer, „A distributed optimization algorithm for Nash bargaining in multi-agent systems“, Berlin, Germany, 2020.
- M. Hertneck und F. Allgöwer, „Exploiting Information for Decentralized Periodic Event-Triggered Control“, in Proc. 59th IEEE Conf. Decision and Control (CDC), Jeju, South Korea, 2020, S. 4999–5004. doi: 10.1109/CDC42340.2020.9304456.
- M. Hertneck, S. Linsenmayer, und F. Allgöwer, „Stabilization of Nonlinear Weakly Hard Real-Time Control Systems“, in Proc. 21st IFAC World Congress, Berlin, Germany, 2020, S. 2632–2637. doi: 10.1016/j.ifacol.2020.12.307.
- L. Schwenkel, J. Köhler, M. A. Müller, und F. Allgöwer, „Dynamic uncertainties in model predictive control: Guaranteed stability for constrained linear systems“, in 59th IEEE Conference on Decision and Control (CDC), 2020, S. 1235–1241. [Online]. Verfügbar unter: https://doi.org/10.1109/CDC42340.2020.9303819
- J. Berberich, J. Köhler, M. A. Müller, und F. Allgöwer, „Data-driven tracking MPC for changing setpoints“, in Proc. 21st IFAC World Congress, Berlin, Germany, 2020, S. 971–976. doi: 10.1016/j.ifacol.2020.12.389.
- A. Koch, M. Lorenzen, P. Pauli, und F. Allgöwer, „Facilitating learning progress in a first control course via Matlab apps“, in Proc. 21st IFAC World Congress, Berlin, Germany, 2020, S. 17356–17361. doi: 10.1016/j.ifacol.2020.12.2086.
- H. Schlüter und F. Allgöwer, „A Constraint-Tightening Approach to Nonlinear Stochastic Model Predictive Control under General Bounded Disturbances“, in Proc.\ 21th IFAC World Congress, Berlin, Germany, Juli 2020, S. 7130–7135. doi: 10.1016/j.ifacol.2020.12.518.
- A. Koch, J. Berberich, und F. Allgöwer, „Verifying dissipativity properties from noise-corrupted input-state data“, in Proc. 59th IEEE Conf. on Decision and Control (CDC), Jeju, South Korea, 2020, S. 616–621. doi: 10.1109/CDC42340.2020.9304380.
- D. Persson, A. Koch, und F. Allgöwer, „Probabilistic H2-norm estimation via Gaussian process system identification“, in Proc. 21st IFAC World Congress, Berlin, Germany, 2020, S. 431–436. doi: 10.1016/j.ifacol.2020.12.211.
- Y. Lian, S. Wildhagen, Y. Jiang, B. Houska, F. Allgöwer, und C. N. Jones, „Resource-Aware Asynchronous Multi-Agent Coordination Via Self-Triggered MPC“, in 59th IEEE Conf. Decision and Control (CDC), Jeju, South Korea, 2020, S. 685–690. doi: 10.1109/CDC42340.2020.9304137.
- S. Wildhagen, C. N. Jones, und F. Allgöwer, „A resource-aware approach to self-triggered model predictive control“, Berlin, Germany, 2020. doi: 10.1016/j.ifacol.2020.12.926.
- E. Müller, P. N. Köhler, K. Y. Pettersen, und F. Allgöwer, „Economic model predictive control for obstacle-aided snake robot locomotion“, Berlin, Germany, 2020.
- S. Wildhagen und F. Allgöwer, „Scheduling and control over networks using MPC with time-varying terminal ingredients“, in Proc. American Control Conf. (ACC), Denver, CO, USA, 2020, S. 1913–1918. doi: 10.23919/ACC45564.2020.9147411.
- T. Martin, A. Koch, und F. Allgöwer, „Data-driven surrogate models for LTI systems via saddle-point dynamics“, in Proc. 21st IFAC World Congress, Berlin, Germany, 2020, S. 971–976. doi: 10.1016/j.ifacol.2020.12.1261.
- T. Martin und F. Allgöwer, „Iterative data-driven inference of nonlinearity measures via successive graph approximation“, in Proc. 59th IEEE Conf. Decision and Control (CDC), Jeju, South Korea, 2020, S. 4760–4765. doi: 10.1109/CDC42340.2020.9304285.
- J. Köhler, M. A. Müller, und F. Allgöwer, „Implicit solutions to constrained nonlinear output regulation using MPC“, in Proc.\ 59th IEEE Conf.\ Decision and Control (CDC), 2020, S. 4604–4609.
- F. Jaumann, S. Wildhagen, und F. Allgöwer, „Saving Tokens in Rollout Control with Token Bucket Specification“, in Proc. 21st IFAC World Congress, Berlin, Germany, 2020, S. 2662–2669. doi: 10.1016/j.ifacol.2020.12.313.
- M. Rosenfelder, J. Köhler, und F. Allgöwer, „Stability and performance in transient average constrained economic MPC without terminal constraints“, 2020.
- J. Berberich, A. Koch, C. W. Scherer, und F. Allgöwer, „Robust data-driven state-feedback design“, in Proc. American Control Conf. (ACC), Denver, CO, USA, 2020, S. 1532–1538. doi: 10.23919/ACC45564.2020.9147320.
- L. Schwenkel, J. Köhler, M. A. Müller, und F. Allgöwer, „Robust Economic Model Predictive Control without Terminal Conditions“, 2020. doi: 10.1016/j.ifacol.2020.12.465.
- J. Venkatasubramanian, J. Köhler, J. Berberich, und F. Allgöwer, „Robust dual control based on gain scheduling“, in Proc. 59th IEEE Conf. Decision and Control (CDC), Jeju, South Korea, 2020, S. 2270–2277. doi: 10.1109/CDC42340.2020.9304336.
- M. Hertneck, S. Linsenmayer, und F. Allgöwer, „Model-Based Nonlinear Periodic Event-Triggered Control for Continuous-Time Systems with Sampled-Data Prediction“, in Proc. European Control Conf. (ECC), Saint Petersburg, Russia, 2020, S. 1814–1819.
- J. Berberich und F. Allgöwer, „A trajectory-based framework for data-driven system analysis and control“, in Proc. European Control Conf. (ECC), Saint Petersburg, Russia, 2020, S. 1365–1370. doi: 10.23919/ECC51009.2020.9143608.
- M. Hirche, P. N. Köhler, M. A. Müller, und F. Allgöwer, „Distributed Model Predictive Control for Consensus of Constrained Heterogeneous Linear Systems“, in Proc. 59th IEEE Conf. on Decision and Control (CDC), Jeju Island, Republic of Korea, 2020, S. 1248–1253. doi: 10.1109/CDC42340.2020.9303838.
- M. Nonhoff, P. N. Köhler, und F. Allgöwer, „Economic model predictive control for snake robot locomotion“, Nice, France, 2019.
- R. Soloperto, J. Köhler, M. A. Müller, und F. Allgöwer, „Collision avoidance for uncertain nonlinear systems and moving obstacles using robust Model Predictive Control“, Naples, Italy, 2019.
- P. N. Köhler, M. A. Müller, und F. Allgöwer, „Graph topology and subsystem centrality in approximately dissipative system interconnections“, in Proc. 58th IEEE Conference on Decision and Control (CDC), Nice, France, 2019, S. 7441–7447.
- S. Wildhagen, M. A. Müller, und F. Allgöwer, „Economic MPC using a Cyclic Horizon with Application to Networked Control Systems“, in Proc. 11th IFAC Symp. Nonlinear Control Systems (NOLCOS), Vienna, Austria, 2019, S. 796–801. doi: 10.1016/j.ifacol.2019.12.011.
- S. Linsenmayer, M. A. Müller, H. Ishii, und F. Allgöwer, „Event-based Containability for Linear Systems with Arbitrarily Small Bit Rates“, in Proc. 8th IFAC Workshop on Distributed Estimation and Control in Networked Systems (NecSys), Chicago, IL, USA, 2019, S. 31–36. doi: 10.1016/j.ifacol.2019.12.138.
- M. Hertneck, S. Linsenmayer, und F. Allgöwer, „Nonlinear Dynamic Periodic Event-Triggered Control with Robustness to Packet Loss Based on Non-Monotonic Lyapunov Functions“, in Proc. 58th IEEE Conf. Decision and Control (CDC), Nice, France, 2019, S. 1680–1685. doi: 10.1109/CDC40024.2019.9029770.
- J. Berberich, M. Sznaier, und F. Allgöwer, „Signal estimation and system identification with nonlinear dynamic sensors“, in 3rd IEEE Conf. Control Technology and Applications (CCTA), Hong Kong, China, 2019, S. 505–510. doi: 10.1109/CCTA.2019.8920592.
- S. Linsenmayer, B. W. Carbelli, F. Dürr, J. Falk, F. Allgöwer, und K. Rothermel, „Integration of Communication Networks and Control Systems Using a Slotted Transmission Classification Model“, in Proc. 16th IEEE Annual Consumer Communications Networking Conf. (CCNC), Las Vegas, NV, USA, 2019, S. 1–6. doi: 10.1109/CCNC.2019.8651811.
- P. Wenzelburger und F. Allgöwer, „A Petri Net Modeling Framework for the Control of Flexible Manufacturing Systems“, in Proc. 9th IFAC Conf. Manufacturing Modeling, Management, and Control (MIM), Berlin, Germany, 2019, S. 492–498. doi: 10.1016/j.ifacol.2019.11.111.
- J. Köhler, M. A. Müller, und F. Allgöwer, „A simple framework for nonlinear robust output-feedback MPC“, in Proc. 18th European Control Conference (ECC), Naples, Italy, 2019, S. 793–798.
- T. Martin und F. Allgöwer, „Nonlinearity Measures for Data-Driven System Analysis and Control“, in Proc. 58th IEEE Conf. Decision and Control (CDC), Nice, France, 2019, S. 3605–3610. doi: 10.1109/CDC40024.2019.9029804.
- T. Martin, P. N. Köhler, und F. Allgöwer, „Dissipativity and Economic Model Predictive Control for Optimal Set Operation“, in Proc. American Control Conf. (ACC), Philadelphia, PA, USA, 2019, S. 1020–1026. doi: 10.23919/ACC.2019.8814305.
- W. Halter, S. Michalowsky, und F. Allgöwer, „Extremum seeking for optimal enzyme production under cellular fitness constraints“, Neapel, Italien, 2019.
- P. N. Köhler, M. A. Müller, und F. Allgöwer, „Approximate dissipativity and performance bounds for interconnected systems“, in Proc. 18th European Control Conference (ECC), Naples, Italy, 2019, S. 787–792.
- R. Soloperto, J. Köhler, M. A. Müller, und F. Allgöwer, „Dual Adaptive MPC for output tracking of linear systems“, Nice, France, 2019.
- J. Köhler, E. Andina, R. Soloperto, M. A. Müller, und F. Allgöwer, „Linear robust adaptive model predictive control: Computational complexity and conservatism“, in Proc. 58th IEEE Conference on Decision and Control (CDC), Nice, France, 2019, S. 1383–1388.
- A. Romer, S. Trimpe, und F. Allgöwer, „Data-driven inference of passivity properties via Gaussian process optimization“, in Proc. European Control Conf. (ECC), Naples, Italy, 2019, S. 29–35. doi: 10.23919/ECC.2019.8795728.
- P. Wenzelburger und F. Allgöwer, „A Novel Optimal Online Scheduling Scheme for Flexible Manufacturing Systems“, in Proc. 13th IFAC Workshop on Intelligent Manufacturing Systems (IMS), Oshawa, Canada, 2019, S. 1–6. doi: 10.1016/j.ifacol.2019.10.002.
- A. Romer, J. M. Montenbruck, und F. Allgöwer, „Some ideas on sampling strategies for data-driven inference of passivity properties for MIMO systems“, in Proc. American Control Conference (ACC), Milwaukee, Wisconsin, USA, 2018, S. 6094–6100. doi: 10.23919/ACC.2018.8431399.
- J. Köhler, M. A. Müller, und F. Allgöwer, „MPC for nonlinear periodic tracking using reference generic offine computations“, in Proc. IFAC Conf. Nonlinear Model Predictive Control (NMPC), Madison, Wisconsin, 2018, S. 656–661.
- J. Köhler, M. A. Müller, und F. Allgöwer, „A novel constraint tightening approach for nonlinear robust model predictive control“, in Proc. American Control Conf. (ACC), 2018, S. 728–734.
- J. Köhler, C. Enyioha, und F. Allgöwer, „Dynamic Resource Allocation to Control Epidemic Outbreaks -A Model Predictive Control Approach“, in Proc. American Control Conf.(ACC), Milwaukee, Wisconsin, 2018, S. 1546–1551.
- J. Köhler, M. A. Müller, und F. Allgöwer, „Nonlinear Reference Tracking with Model Predictive Control: An Intuitive Approach“, in Proc. European Control Conf. (ECC), 2018, S. 1355–1360.
- A. Romer, J. M. Montenbruck, und F. Allgöwer, „Data-driven inference of conic relations via saddle-point dynamics“, in Proc. 9th IFAC Symp. Robust Control Design (ROCOND), Florianópolis, Brazil, 2018, S. 586–591. doi: 10.1016/j.ifacol.2018.11.139.
- P. N. Köhler, M. A. Müller, und F. Allgöwer, „Interconnections of dissipative systems and distributed economic MPC“, in Proc. 6th IFAC Conference on Nonlinear Model Predictive Control, Madison, Wisconsin, 2018, S. 88–93.
- W. Halter, F. Allgöwer, R. M. Murray, und A. Gyorgy, „Optimal Experiment Design and Leveraging Competition for Shared Resources in Cell-Free Extracts“, Miami Beach, USA, 2018.
- R. Soloperto, M. A. Müller, und F. Allgöwer, „Learning-Based Robust Model Predictive Control with State-Dependent Uncertainty“, Madison, Wisconsin, 2018.
- S. Linsenmayer und F. Allgöwer, „Performance oriented triggering mechanisms with guaranteed traffic characterization for linear discrete-time systems“, in Proc. European Control Conf. (ECC), Limassol, Cyprus, 2018, S. 1474–1479. doi: 10.23919/ECC.2018.8550568.
- M. Lorenzen, F. Allgöwer, und M. Cannon, „Adaptive Model Predictive Control with Robust Constraint Satisfaction“, in Proc. 20th IFAC World Congress, Toulouse, France, 2017, S. 3368–3373.
- P. N. Köhler, M. A. Müller, und F. Allgöwer, „Transient performance of economic model predictive control with average constraints“, in Proc. 56th IEEE Conf. Decision and Control (CDC), Melbourne, Victoria, Australia, 2017, S. 5557–5562.
- W. Halter, Z. A. Tuza, und F. Allgöwer, „Signal differentiation with genetic networks“, Toulouse, France, 2017.
- J. M. Montenbruck, S. Zeng, und F. Allgöwer, „Linear Systems with Quadratic Outputs“, in Proc. American Control Conf. (ACC), Seattle, WA, USA, 2017, S. 1030–1034.
- S. Zeng, J. M. Montenbruck, und F. Allgöwer, „Periodic Signal Compressors“, in Proc. 20th World Congress of the International Federation of Automatic Control, 2017, S. 6649–6654.
- S. Linsenmayer, R. Blind, und F. Allgöwer, „Delay-dependent data rate bounds for containability of scalar systems“, in Proc. 20th IFAC World Congress, Toulouse, France, 2017, S. 7875–7880. doi: 10.1016/j.ifacol.2017.08.742.
- A. Romer, J. M. Montenbruck, und F. Allgöwer, „Sampling strategies for data-driven inference of passivity properties“, in Proc. 56th IEEE Conf. Decision and Control (CDC), Melbourne, Victoria, Australia, 2017, S. 6389–6394. doi: 10.1109/CDC.2017.8264623.
- M. Lorenzen, M. A. Müller, und F. Allgöwer, „Stabilizing Stochastic MPC without Terminal Constraints“, in Proc. American Control Conf. (ACC), Seattle, Washington, 2017, S. 5636–5641.
- J. Köhler, M. A. Müller, N. Li, und F. Allgöwer, „Real Time Economic Dispatch for power networks: A Distributed Economic Model Predictive Control Approach“, in Proc. 56th IEEE Conf. Decision and Control (CDC), Melbourne, Victoria, Australia, 2017, S. 6340–6345.
- A. Romer, J. M. Montenbruck, und F. Allgöwer, „Determining dissipation inequalities from input-output samples“, in Proc. 20th IFAC World Congress, Toulouse, France, 2017, S. 7789–7794. doi: 10.1016/j.ifacol.2017.08.1053.
- W. Halter, J. M. Montenbruck, und F. Allgöwer, „Systems with integral resource consumption“, Melbourne, Australia, 2017.
- S. Linsenmayer und F. Allgöwer, „Stabilization of Networked Control Systems with weakly hard real-time dropout description“, in Proc. 56th IEEE Conf. Decision and Control (CDC), Melbourne, Australia, 2017, S. 4765–4770. doi: 10.1109/CDC.2017.8264364.
- P. N. Köhler, M. A. Müller, J. Pannek, und F. Allgöwer, „On Exploitation of Supply Chain Properties by Sequential Distributed MPC.“, in Proc. 20th IFAC World Congress, Toulouse, France, 2017, S. 8219–8224.
- J. M. Montenbruck und F. Allgöwer, „Separable matrices and minimum complexity controllers“, in Proc. 56th IEEE Conf. Decision and Control (CDC), 2017, S. 4187–4192.
Preprints
- L. Schwenkel, A. Hadorn, M. A. Müller, und F. Allgöwer, „Linearly discounted economic MPC without terminal conditions for periodic optimal operation“, 2022. [Online]. Verfügbar unter: https://arxiv.org/abs/2205.03118
- L. Schwenkel, J. Köhler, M. A. Müller, und F. Allgöwer, „Robust peak-to-peak gain analysis using integral quadratic constraints“, 2022. [Online]. Verfügbar unter: https://arxiv.org/pdf/2211.09434.pdf
Frank Allgöwer ist Leiter des Instituts für Systemtheorie und Regelungstechnik an der Universität Stuttgart. Seine Forschungsschwerpunkte liegen in der Entwicklung von neuen Methoden der System- und Regelungstheorie mit speziellem Schwerpunkt auf der nichtlinearen, vernetzten, prädiktiven und datenbasierten Regelung; Anwendungsgebiete umfassen u.a. die verfahrenstechnische Prozessregelung, die Mechatronik, die biomedizinische Technik und die Nanotechnologie. Ein weiterer Forschungsschwerpunkt liegt auf dem Gebiet der Systembiologie.
Frank Allgöwer engagiert sich in ausgewählten Wissenschafts- und Universitätsgremien und nationalen und internationalen Organisationen und ist Herausgeber und Mitherausgeber diverser internationaler Fachzeitschriften. Er wurde mit verschiedenen Preisen ausgezeichnet, u.a. dem Gottfried-Wilhelm-Leibniz Preis der DFG (2004), dem Landeslehrpreis des Landes Baden-Württemberg (2007), dem IFAC Outstanding Service Award der International Federation auf Automatic Control (2011) und dem Distinguished Member Award der IEEE Control System Society (2015). Von 2012 bis 2020 war er Vizepräsident der Deutschen Forschungsgemeinschaft.
Werdegang
23.05.1962 Geboren in Heilbronn-Sontheim
1981 – 1987 Studium der Technischen Kybernetik und Angewandten
Mathematik an der Universität Stuttgart bzw. University of
California at Los Angeles (UCLA)
1988 – 1995 Wissenschaftlicher Mitarbeiter am Institut für
Systemdynamik und Regelungstechnik,
Universität Stuttgart
1991 – 1992 Visiting Research Associate, California Institute of
Technology, Pasadena, CA, USA
1995 – 1996 Visiting Research Associate, DuPont Experimental Station,
Wilmington, DE, USA
1996 Promotion, Universität Stuttgart
Titel: Näherungsweise Ein- / Ausgangslinearisierung
nichtlinearer Systeme
1996 – 1999 Assistenzprofessor für Nichtlineare Systeme, Departement
Elektrotechnik, ETH Zürich, Schweiz
seit 1999 Professor und Direktor des Instituts für Systemtheorie und
Regelungstechnik, Universität Stuttgart
2003 – 2004 Visiting Professor, University of California at Santa Barbara,
CA, USA
2010 – 2011 Visiting Professor, University of Newcastle, Australien
2018 Mitgründer, Spin-off TGU Systemwissenschaften
2019 Mitgründer, Spin-off eStarling.io
Über 20 Einladungen zu Hauptvorträgen auf internationalen Konferenzen in den letzten fünf Jahren
2002 NaT-Working Preis der Robert Bosch Stiftung
2004 Gottfried-Wilhelm-Leibniz Preis der Deutschen
Forschungsgemeinschaft
2005 Best Paper Award 2004/2005, Asian Journal of Control
2005 D.B. Robinson Distinguished Speaker (September 29, 2005),
University of Alberta, Edmonton
2006 IEEE Distinguished Lecturer
2006 Fellow, International Federation of Automatic Control (IFAC)
2007 Landeslehrpreis des Landes Baden-Württemberg
2008 Best Paper Award, IFAC Journal Control Engineering Practice
2009 Best Poster Award, Cancer Systems Biology 2009
2011 Best Paper Award, 8th International Workshop on Computational
Systems Biology
2011 Outstanding Service Award, International Federation of Automatic
Control (IFAC)
2011 International Best Paper Award, SICE 2011
2013 Best Paper Award 2012/2013, Asian Journal of Control
2013 Preis für den besten Vortrag „Regelungstechnischen Kolloquium
Boppard"
2013 DeGruyter Publishing Best Paper Award
2015 Distinguished Member Award der IEEE Control System Society
2017 Journal of Process Control Paper Prize Award
2017 24th Roger Sargent Lecture, December 9, 2017,
Imperial College London
2017, 2019 Publikationspreis der Universität Stuttgart
2019 Preis „Ideenwettbewerb: Mobilitätskonzepte für den emissions-
freien Campus“ des MWK Baden-Württemberg für Mobility Living
Lab (MobiLab)
2018 Publikationspreis 2017 der Universität Stuttgart
2018 Best Paper Award, 9th IFAC Symposium on Robust Control Design
(ROCOND'18)
2019 Best Paper Award, 8th IFAC Workshop on Distributed Estimation
and Control in Networked Systems (NecSys 2019)
2020 Outstanding Student Paper Award for "Robust Constraint
Satisfaction in Data-Driven MPC" (J. Berberich, J. Köhler,
M.A. Müller and F. Allgöwer) at the IEEE CDC Conference 2020.
2021 Publikationspreis 2019 der Universität Stuttgart
Wintersemester 2021/2022
- Einführung in die Regelungstechnik
- Konzepte der Regelungstechnik (3V/1Ü)
- Praktikum Konzepte der Regelungstechnik
- Matlab Einführungskurs
Sommersemester 2021
- Projektwettbewerb: Konzepte der Regelungstechnik
- Projektwettbewerb: Einführung in die Regelungstechnik
- Proseminar Technische Kybernetik 2021
- Praktikum: Einführung in die Regelungstechnik
- Mehrgrößenregelung
- Systemdynamische Grundlagen der Regelungstechnik
- Model Predictive Control
- Nonlinear Control
Name |
School |
Year |
Descendants |
Berberich, Julian |
Universität Stuttgart |
2022 |
|
Wenzelburger, Philipp |
Universität Stuttgart |
2022 |
|
Universität Stuttgart |
2021 |
|
|
Universität Stuttgart |
2021 |
|
|
Löhning, Martin |
Universität Stuttgart |
2021 |
|
Universität Stuttgart |
2020 |
|
|
Universität Stuttgart |
2020 |
|
|
Universität Stuttgart |
2020 |
|
|
Universität Stuttgart |
2020 |
|
|
Universität Stuttgart |
2018 |
|
|
Universität Stuttgart |
2017 |
|
|
Universität Stuttgart |
2017 |
|
|
Universität Stuttgart |
2017 |
|
|
Universität Stuttgart |
2017 |
|
|
Universität Stuttgart |
2016 |
|
|
Universität Stuttgart |
2016 |
|
|
Universität Stuttgart |
2016 |
|
|
Universität Stuttgart |
2015 |
|
|
Universität Stuttgart |
2015 |
|
|
Universität Stuttgart |
2014 |
|
|
Universität Stuttgart |
2014 |
|
|
Universität Stuttgart |
2014 |
|
|
Universität Stuttgart |
2013 |
|
|
Universität Stuttgart |
2013 |
|
|
Universität Stuttgart |
2013 |
|
|
Universität Stuttgart |
2013 |
|
|
Universität Stuttgart |
2011 |
|
|
Universität Stuttgart |
2011 |
|
|
Universität Stuttgart |
2010 |
|
|
Universität Stuttgart |
2010 |
|
|
Universität Stuttgart |
2010 |
|
|
Universität Stuttgart |
2009 |
|
|
Universität Stuttgart |
2009 |
|
|
Universität Stuttgart |
2009 |
|
|
Universität Stuttgart |
2007 |
|
|
Universität Stuttgart |
2006 |
|
|
Universität Stuttgart |
2006 |
|
|
Universität Stuttgart |
2005 |
|
|
Universität Stuttgart |
2004 |
1 |
|
Universität Stuttgart |
2004 |
|
|
ETH Zürich |
2004 |
|
|
Universität Stuttgart |
2003 |
|
|
ETH Zürich |
2001 |
1 |
|
Universität Stuttgart |
1997 |
|
Entwicklung von neuen Methoden der System- und Regelungstheorie mit speziellem Schwerpunkt auf:
- Nichtlineare Regelung
- Vernetzte Regelung
- Prädiktive Regelung
- Datenbasierte Regelung
Anwendungsschwerpunkte:
- Verfahrenstechnische Prozessregelung
- Mechatronik
- Biomedizinische Technik
- Nanotechnologie
- Systembiologie
Universitäts- und Wissenschaftsgremien
seit 1999 Studiendekan „Technische Kybernetik“, Universität Stuttgart
1999 - 2004 Stellvertretender Sprecher, SFB 412, Universität Stuttgart
2003 - 2012 Mitglied des Fachkollegiums „Systemtechnik“ der DFG
2005 - 2013 Mitglied des Direktoriums des „Zentrum Systembiologie“,
Universität Stuttgart
seit 2006 Vertrauensdozent der Studienstiftung des deutschen Volkes
2006 - 2012 Mitglied des Senatsausschusses Struktur, Universität Stuttgart
2006 – 2012 Mitglied der Ehrungskommission, Universität Stuttgart
seit 2007 Mitglied des Direktoriums der Exzellenzcluster „Simulation
Technology” (2007-2018) und „Data-integrated simulation science“
(seit 2019), Universität Stuttgart
seit 2009 Leiter der Graduiertenschule „Simulation Technology”, Universität
Stuttgart
seit 2009 Vorsitzender des Promotionsausschusses des Stuttgart Center for
Simulation Science
2009 – 2013 Mitglied im Vorstand des Informatik Verbund Stuttgart
2012 - 2017 Mitglied des Nominierungsausschusses für den Gottfried-Wilhelm-
Leibniz Preis der DFG
2012 - 2017 Vorsitzender der Jury für den Communicator Preis, Stifterverband
und DFG
2012 - 2020 Vizepräsident der Deutschen Forschungsgemeinschaft
2013 „Sounding Board“ Ingenieurwissenschaften@2025 des
Ministeriums für Wissenschaft und Kunst, Baden-Württemberg
2013 – 2016 Mitglied im Beirat „Kerndatensatz“ des Wissenschaftsrats
2014 - 2018 Geschäftsführender Direktor des Stuttgart Research Centre
Systems Biology
2014 – 2015 Mitglied im Lenkungskreis der Evaluierung der Internationalen
Graduiertenkollegs der DFG
2014 - 2020 Vorsitzender des Gemeinsamen Ausschuss für
Sicherheitsrelevante Forschung von Leopoldina und DFG
2015 – 2020 Sprecher der Forschungsinitiative „System Mensch“ der
Universitäten Stuttgart und Tübingen
seit 2017 Stellvertretender Sprecher der International Max-Planck Research
School for Intelligent Systems
2018 -2020 Mitglied der Expertenkommissison „Wissenschaft im digitalen
Zeitalter“
seit 2018 Mitglied, Cyber Valley Plenary Assembly
seit 2019 Stellvertretender Sprecher des Exzellenzclusters „Data-integrated
simulation science“, Universität Stuttgart
seit 2019 Mitglied des Cyber Valley Research Fund Boards
2019 - 2020 Vorsitzender des NFDI-Expertengremiums der DFG
seit 2020 Mitglied der DFG Pandemiekommission
seit 2020 Gründungsmitglied, Interchange Forum for the Reflection of
Intelligent Systems
Verbände und Organisationen
seit 2000 Mitglied des Beirates der VDI/VDE-Gesellschaft Mess- und
Automatisierungstechnik (GMA)
2000 – 2015 Vorsitzender des Fachbereichs 1 „Grundlagen und Methoden der
Mess- und Automatisierungstechnik“ der VDI/VDE-Gesellschaft
Mess- und Automatisierungstechnik (GMA)
2001 – 2008 Chairman, Technical Committee on Nonlinear Systems,
International Federation of Automatic Control (IFAC)
2001 – 2004 Council Member, European Union Control Association (EUCA)
2005 – 2008 Member, Policy Committee, Intern. Federation of Automatic
Control (IFAC)
2005 – 2008 Member, Board of Governors, IEEE Control Systems Society
2007 - 2012 Chairman, International Affairs Committee, IEEE Control Systems
Society
seit 2008 Council Member, International Federation of Automatic Control
(IFAC)
2011 - 2014 Member, Board of Governors, IEEE Control Systems Society
2011 – 2015 Chair, Strategic Planning Group, IFAC
2011 - 2016 Member, IEEE Life Sciences New Initiative (LSNI) Project Team
2012 - 2015 Member, Long Range Planning Committee, IEEE Control
Systems Society
2013 – 2014 Vice-President for Technical Activities, IEEE Control Systems
Society
2014 - 2017 Chair, Administration & Finance Committee, IFAC
2014 - 2017 Member, IEEE Control Systems Award Committee
2014 - 2017 Chair, Election Committee, IFAC
2017 - 2020 President, International Federation of Automatic Control (IFAC)
seit 2017 Member, IFAC Publication Management Board
seit 2020 Chair, Membership Committee, IFAC
Herausgeberschaften
1997 - 2001 Associate Editor, Automatica (Elsevier)
1997 - 2008 Associate Editor, Journal of Process Control (Elsevier)
2001- 2015 Editor, Automatica, Process and Computer Control Area
(Elsevier)
2003 - 2007 Associate Editor, European Journal of Control (Hermes Science)
seit 2008 Editor-in-Chief, Springer Lecture Notes in Control and Information
Sciences
2010 - 2016 Associate Editor, IMA Journal of Mathematical Control and
Information
seit 1998 Mitglied in diversen Herausgeberbeiräten einschließlich
IEE Proceedings on Control Theory and Applications (seit 2006
IET), Journal of Nonlinear and Robust Control, Chemical
Engineering Science, Canadian Journal of Chemical
Engineering, Control Handbook (CRC Press)