Kontakt
+49 711 685 67744
+49 711 685 67735
E-Mail
Pfaffenwaldring 9
70569 Stuttgart
Deutschland
Raum: 3.234
Sprechstunde
Nach Vereinbarung
Fachgebiet
Ich arbeite auf dem Gebiet der Modellprädiktiven Regelung (MPC). In meiner Forschung betrachte ich robustes MPC für Systeme mit Unsicherheiten und Störungen.
- L. Schwenkel, J. Köhler, M. A. Müller, C. W. Scherer, and F. Allgöwer, “Multi-objective robust controller synthesis with integral quadratic constraints in discrete-time,” arXiv:2503.22429, 2025.
- J. Mair, L. Schwenkel, M. A. Müller, and F. Allgöwer, “The Cesàro Value Iteration,” arXiv:2504.04889, 2025, doi: 10.48550/arXiv.2504.04889.
- L. Schwenkel, J. Köhler, M. A. Müller, and F. Allgöwer, “Output-feedback model predictive control under dynamic uncertainties using integral quadratic constraints,” arXiv:2504.00196, 2025.
- L. Schwenkel, A. Hadorn, M. A. Müller, and F. Allgöwer, “Linearly discounted economic MPC without terminal conditions for periodic optimal operation,” Automatica, vol. 159, p. 111393, 2024, doi: 10.1016/j.automatica.2023.111393.
- E. Milios, K. P. Wabersich, F. Berkel, and L. Schwenkel, “Stability Mechanisms for Predictive Safety Filters,” arXiv preprint arXiv:2404.05496, 2024.
- L. Schwenkel, D. Briem, M. A. Müller, and F. Allgöwer, “On discount functions for economic model predictive control without terminal conditions,” arXiv preprint arXiv:2405.14361, 2024.
- L. Schwenkel, J. Köhler, M. A. Müller, and F. Allgöwer, “Model predictive control for linear uncertain systems using integral quadratic constraints,” IEEE Trans. Automat. Control, vol. 68, Art. no. 1, 2023, doi: 10.1109/TAC.2022.3171410.
- L. Schwenkel, J. Köhler, M. A. Müller, and F. Allgöwer, “Robust peak-to-peak gain analysis using integral quadratic constraints,” in Proc. 22nd IFAC World Congress, Yokohama, Japan, 2023, pp. 11564–11569. doi: 10.1016/j.ifacol.2023.10.452.
- C. Klöppelt, L. Schwenkel, F. Allgöwer, and M. A. Müller, “Transient Performance of Tube-based Robust Economic Model Predictive Control,” in Proc. IFAC Conf. Nonlinear Model Predictive Control (NMPC), Bratislava, Slovakia, 2021, pp. 28–35. doi: 10.1016/j.ifacol.2021.08.520.
- L. Schwenkel, M. Gharbi, S. Trimpe, and C. Ebenbauer, “Online learning with stability guarantees: A memory-based warm-starting for real-time MPC,” Automatica, vol. 122, p. 109247, 2020, doi: 10.1016/j.automatica.2020.109247.
- J. Köhler, L. Schwenkel, A. Koch, J. Berberich, P. Pauli, and F. Allgöwer, “Robust and optimal predictive control of the COVID-19 outbreak,” Annual reviews in Control, 2020.
- L. Schwenkel, J. Köhler, M. A. Müller, and F. Allgöwer, “Dynamic uncertainties in model predictive control: Guaranteed stability for constrained linear systems,” in 59th IEEE Conference on Decision and Control (CDC), Jeju, South Korea, 2020, pp. 1235–1241. doi: 10.1109/CDC42340.2020.9303819.
- L. Schwenkel, J. Köhler, M. A. Müller, and F. Allgöwer, “Robust Economic Model Predictive Control without Terminal Conditions,” in Proc. 21st IFAC World Congress, Berlin, Germany, 2020, pp. 7097–7104. doi: 10.1016/j.ifacol.2020.12.465.
- L. Schwenkel, M. Guo, and M. Bürger, “Optimizing Sequences of Probabilistic Manipulation Skills Learned from Demonstration,” in Proceedings of the Conference on Robot Learning, PMLR, 2020, pp. 273–282. [Online]. Available: http://proceedings.mlr.press/v100/schwenkel20a.html
- L. Schwenkel, M. Gharbi, S. Trimpe, and C. Ebenbauer, “Online learning with stability guarantees: A memory-based real-time model predictive controller,” arXiv:1812.09582, 2018. [Online]. Available: https://arxiv.org/abs/1812.09582
SS 2024 |
|
WS 2023/24 |
|
WS 2022/23 |
|
WS 2021/22 |
|
SS 2021 |
|
WS 2020/21 |
|
SS 2020 |
|
WS 2019/20 |
seit 07/2019 |
Wissenschaftlicher Mitarbeiter am Institut für Systemtheorie und Regelungstechnik, Universität Stuttgart |
04/2017 − 05/2019 |
Masterstudium Technische Kybernetik an der Universität Stuttgart Masterarbeit: "Leveraging Data in Model Predictive Control" |
12/2018 − 05/2019 |
Praktikum am Bosch Center for Artificial Intelligence (BCAI), Robert Bosch GmbH, Renningen Thema: Learning from Demonstration |
10/2014 − 03/2017 |
Bachelorstudium Technische Kybernetik an der Universität Stuttgart Bachelorarbeit: "Accelerated Gradient Methods for Convex Optimization" |
10/2012 − 09/2014 |
Studium Mathematik und Physik auf gymnasiales Lehramt an der Universität Tübingen, ohne Abschluss aufgrund eines Fachrichtungswechsels. |
06/2012 |
Abitur am Graf Eberhard Gynmasium in Bad Urach |